Optimal control of thermal and wave processes in composite materials
DOI:
https://doi.org/10.21638/11701/spbu10.2023.308Abstract
The paper indicates the approach and the corresponding to it method of penalty functions for analyzing the problems of optimal control of thermal and wave processes in structural elements made of composite materials (composites). An object that is quite common in the industrial sphere, the structure of which is a set of layers (phases) of unidirectional composites — layered composites, is considered. When solving problems related to the analysis and description of the states of composites, quantitative characteristics of layers that are not functions of the coordinates of the points of the medium are usually used in order not to solve the corresponding problems for an inhomogeneous medium. Such functions are elements of Sobolev spaces, first of all, functions summable with a square. The convenience lies in the fact that when finding the conditions for solvability of initial-boundary value problems of various types (in most cases, such problems are the basis of mathematical models of many physical processes), it is possible to reduce to operator-difference systems, for which it is easy to construct a priori estimates of weak solutions. The next step after establishing the weak solvability of the initial-boundary value problem of the thermal or wave process in composites is the formulation and solution of the problem of optimal control of these processes. The proposed method of penalty functions on the example of solving such problems is a general method. It is applicable with slight modifications also not only in the case of elliptic, parabolic and other problems (including nonlinear) for scalar functions, but also for vector functions. An example of the latter is the Navier–Stokes system, widely used in the description of network-like hydrodynamic processes, considered in Sobolev spaces, the elements of which are functions with carriers on n-dimensional network-like domains, n greater or equal to 2.
Keywords:
composite materials, layered region, initial-boundary value problem, weak solvability, optimal control, method of penalty functions
Downloads
References
Artemov M. A., Baranovskii E. S., Zhabko A. P., Provotorov V. V. On a 3D model of non-isothermal flows in a pipeline network // Journal of Physics. Conference Series. 2019. Vol. 1203. Art. ID 012094. https://doi.org/10.1088/1742-6596/1203/1/012094
Zhabko N. A., Karelin V. V., Provotorov V. V., Sergeev S. M. The method of penalty functions in the analysis of optimal control problems of Navier–Stokes evolutionary systems with a spatial variable in a network-like domain // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2023. Т. 19. Вып. 2. С. 162–175. https://doi.org/10.21638/11702/spbu10.2023.203
Baranovskii E. S., Provotorov V. V., Artemov M. A., Zhabko A. P. Non-isothermal creeping flows in a pipeline network: existence results // Symmetry. 2021. Vol. 13. Art. ID 1300. https://doi.org/10.3390/sym13071300
Zhabko A. P., Provotorov V. V., Shindyapin A. I. Optimal control of a differential-difference parabolic system with distributed parameters on the graph // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2021. Т. 17. Вып. 4. С. 433–448. https://doi.org/10.21638/11701/spbu10.2021.411
Lax P. D., Milgram N. Parabolic equations // Contributions to the theory of partial differential equations / Ann. Math. Studies. 1954. Vol. 33. P. 167–190.
Провоторов В. В. Построение граничных управлений в задаче о гашении колебаний системы из M струн // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2012. Т. 6. Вып. 1. С. 60–69.
Подвальный С. Л., Провоторов В. В. Определение стартовой функции в задаче наблюдения параболической системы на графе // Вестник Воронежского государственного технического университета. 2014. Т. 10. № 6. С. 29–35.
Лионс Ж.-Л., Мадженес Э. Неоднородные граничные задачи и их приложения. М.: Мир, 1971. 367 с.
Лионс Ж.-Л. Оптимальное управление системами, описываемыми уравнениями с частными производными. М.: Мир, 1973. 414 с.
Самарский А. А. Теория разностных схем. М.: Наука, 1973. 655 с.
Провоторов В. В. Собственные функции краевых задач на графе и приложения. Воронеж: Научная книга, 2008. 247 с.
Demyanov V. F., Giannessi F., Karelin V. V. Optimal control problems via exact penalty functions // Journal of Global Optimization. 1998. Vol. 12. P. 127–139.
Карелин В. В. Точные штрафы в задаче оценки координат динамической системы в условиях неопределенности // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2011. Вып. 4. С. 40–44.
Demyanov V. F., Karelin V. V. On a minimax approach to the problem of identification of dynamic systems in the presence of uncertainty. Advances in optimization (Lambrecht, 1991) // Lecture Notes in Econom. and Math. Systems. Berlin: Springer, 1992. Vol. 382. P. 515–517.
Polyakova L., Karelin V. Exact penalty functions method for solving problems of nondifferentiable optimization // Cybernetics and Physics. SmartFly. LLC. 2014. Vol. 3. N 3. P. 124–129.
Карелин В. В., Фоминых A. В. Точные штрафы в задаче построения оптимального решения дифференциального включения // Труды Института математики и механики УРО РАН. 2015. Т. 21.№ 3. С. 153–163.
Zhabko A. P., Nurtazina K. B., Provotorov V. V. About one approach to solving the inverse problem for parabolic equation // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2019. Т. 15. Вып. 3. С. 322–335. https://doi.org/10.21638/11702/spbu10.2019.303
References
Artemov M. A., Baranovskii E. S., Zhabko A. P., Provotorov V. V. On a 3D model of non-isothermal flows in a pipeline network. Journal of Physics. Conference Series, 2019, vol. 1203, Art. ID 012094. https://doi.org/10.1088/1742-6596/1203/1/012094
Zhabko N. A., Karelin V. V., Provotorov V. V., Sergeev S. M. The method of penalty functions in the analysis of optimal control problems of Navier–Stokes evolutionary systems with a spatial variable in a network-like domain. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2023, vol. 19, iss. 2, pp. 162–175. https://doi.org/10.21638/11702/spbu10.2023.203
Baranovskii E. S., Provotorov V. V., Artemov M. A., Zhabko A. P. Non-isothermal creeping flows in a pipeline network: existence results. Symmetry, 2021, vol. 13, Art. ID 1300. https://doi.org/10.3390/sym13071300
Zhabko A. P., Provotorov V. V., Shindyapin A. I. Optimal control of a differential-difference parabolic system with distributed parameters on the graph. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2021, vol. 17, iss. 4, pp. 433–448. https://doi.org/10.21638/11701/spbu10.2021.411
Lax P. D., Milgram N. Parabolie equations. Contributions to the theory of partial differetial. Ann. Math. Studies, 1954, vol. 33, pp. 167–190.
Provotorov V. V. Postroenie granichnykh upravlenii v zadache o gashenii kolebanii sistemy iz M strun [Construction of boundary controls in the problem of damping vibrations of a system of M strings]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2012, vol. 6, no. 1, pp. 60–69. (In Russian)
Podvalny S. L., Provotorov V. V. Opredelenie startovoi funktsii v zadache nabliudeniia parabolicheskoi sistemy na grafe [Determining the starting function in the task of observing the parabolic system with distributed parameters on the graph]. Vestnik of Voronezh State Technical University, 2014, vol. 10, no. 6, pp. 29–35. (In Russian)
Lions J.-L., Madgenes E. Neodnorodnye granichnye zadachi i ikh prilozheniia [Nonhomogeneous boundary problems and their applications]. Moscow, Mir Publ., 1971, 367 p. (In Russian)
Lions J.-L. Optimal'noe upravlenie sistemami, opisyvaemymi uravneniiami s chastnymi proizvodnymi [Controle optimal de sistemes gouvernes par des eqations aux derivees partielles]. Moscow, Mir Publ., 1973, 414 p. (In Russian)
Samarskii A. A. Teoriia raznostnykh skhem [Theory of difference schemes]. Moscow, Nauka Publ., 1973, 655 p. (In Russian)
Provotorov V. V. Sobstvennye funktsii kraevykh zadach na grafe i prilozheniia [Native functions of boundary value problems on graphs and applications]. Voronezh, Nauchnaya kniga Publ., 2008, 247 p. (In Russian)
Demyanov V. F., Giannessi F., Karelin V. V. Optimal control problems via exact penalty functions. Journal of Global Optimization, 1998, vol. 12, pp. 127–139.
Karelin V. V. Tochnye shtrafy v zadache otsenki koordinat dinamicheskoi sistemy v usloviiakh neopredelennosti [Exact fines in the problem of estimating the coordinates of a dynamical system under uncertainty]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2011, iss. 4, pp. 40–44. (In Russian)
Demyanov V. F., Karelin V. V. On a minimax approach to the problem of identification of dynamic systems in the presence of uncertainty. Advances in optimization (Lambrecht, 1991). Lecture Notes in Econom. and Math. Systems. Berlin, Springer Publ., 1992, vol. 382, pp. 515–517.
Polyakova L., Karelin V. Exact penalty functions method for solving problems of nondifferentiable optimization. Cybernetics and Physics. SmartFly, LLC, 2014, vol. 3, no. 3, pp. 124–129.
Karelin V. V., Fominih A. V. Tochnye shtrafy v zadache postroeniia optimal'nogo resheniia differentsial'nogo vkliucheniia [Exact penalties in the problem of constructing the optimal solution of differential inclusion]. Proceedings of the Institute of Mathematics and Mechanics URO RAS, 2015, vol. 21, no. 3, pp. 153–163. (In Russian)
Zhabko A. P., Nurtazina K. B., Provotorov V. V. About one approach to solving the inverse problem for parabolic equation. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2019, vol. 15, iss. 3, pp. 322–335. https://doi.org/10.21638/11702/spbu10.2019.303
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.