Модификация языковой модели SBERT для выявления ESG-рисков на основе текстовых данных компаний и контрольно-надзорных мероприятий
DOI:
https://doi.org/10.21638/spbu10.2025.106Аннотация
Разработан подход для выявления рисков, связанных с влиянием компаний на окружающую среду, социальной ответственностью и качеством управления (Environmental, Social and Governance — ESG-рисков), на основе собранной текстовой информации о компании. Для достижения этого предлагается модификация языковой модели SBERT с четко заданной функцией расстояния пространства эмбеддингов. Модель обучена на данных контрольно-надзорных мероприятий и текстов сайтов компаний. Приведен пример интерпретации результатов модели.
Ключевые слова:
ESG, модель обработки естественного языка, обучение модели, тематическое моделирование, веб-сайт
Скачивания
Библиографические ссылки
Gao W., Liu Z. Green credit and corporate ESG performance: Evidence from China // Finance Research Letters. 2023. Vol. 55. Art. N. 103940.
Devlin J., Chang M.-W., Lee K., Toutanova K. BERT: Pre-training of deep bidirectional transformers for language understanding // arXiv preprint. arXiv: 1810.04508, 2019. https://arxiv.org/abs/1810.04805v2
Singh A. K., Zhang Y., Anu. Understanding the evolution of environment, social and governance research: Novel implications from bibliometric and network analysis // Evaluation Review. 2022. Vol. 47. N 2. P. 350–386.
Pavani K. A study on risk assessment and financial management on ESG // International Journal of Research Publication and Reviews. 2024. Vol. 5. N 5. P. 3624–3632.
De Giuli M. E., Grechi D., Tanda A. What do we know about ESG and risk? A systematic and bibliometric review // Corporate Social Responsibility and Environmental Management. 2023. Vol. 31. N 2. P. 1096–1108.
Tiwari R., Sharma N., Sharma N. K. Categorizing and understanding the evolution of literature on ESG investments: A bibliometric analysis // A Journal of Business Perspective. 2023. https://doi.org/10.1177/09722629.231197574
Kansal P., Malhotra K., Neelam. Recent trends on Environmental, Social and Governance Research: A bibliometric analysis // Metamorphosis: A Journal of Management Research. 2024. Vol. 23. N 1. P. 7–22.
Ziolo M., Bak I., Spoz A. Incorporating ESG risk in companies’ business models: State of research and energy sector case studies // Energies. 2023. Vol. 16. N 4. Art. N 1809.
Augustin B., Julsain H., Sager M. Integrating ESG risk analysis into a macro investment strategy // CIBC Asset Management Team Report — CIBC, 2021. URL: https://www.cibc.com/en/asset-management/insights/responsible-investing/integrating-esg-risk-analysis. html (дата обращения: 15 ноября 2024 г.).
Gallucci C., Santulli R., Lagasio V. The conceptualization of Environmental, Social and Governance risks in portfolio studies: A systematic literature review // Socio-economic Planning Sciences. 2022. Vol. 84. Art. N 101382.
Sokolov A., Mostovoy J., Ding J., Seco L. Building machine learning systems for automated ESG scoring // The Journal of Impact and ESG Investing. 2021. Vol. 1. N 3. P. 39–50.
Sokolov A., Mostovoy J., Ding J., Seco L. Building machine learning systems for automated ESG scoring // The Journal of Impact and ESG Investing. 2021. Vol. 1. Iss. 3. P. 39–50. https://doi.org/10.3905/jesg.2021.1.010
Luccioni A., Baylor E., Duchene N. Analyzing sustainability reports using natural language processing // arXiv preprint. arXiv: 2011.08073, 2020. https://arxiv.org/abs/2011.08073v2
Yim T. Y., Zhang Y., Tan W., Lam T.-W., Yiu S. M. Meticulously analyzing ESG disclosure: A data-driven approach // 2023 International Conference on Big Data (IEEE 2023). 2023. P. 2884–2889.
Yang W., Rong X. Duration dynamics: Fin-turbo’s rapid route to ESG impact insight // Proceedings of Joint Workshop of the 7th Financial Technology and Natural Language Processing, the 5th Knowledge Discovery from Unstructured Data in Financial Services, and the 4th Workshop on Economics and Natural Language Processing (FinNLP). Torino, Italia: Association for Computational Linguistics, 2024. P. 188–196. URL: https://aclanthology.org/2024.finnlp-1.18/ (дата обращения: 15 ноября 2024 г.).
Ruberg N., Pereira R. B., Stein M. L. GreenAI — An NLP approach to ESG financing // Anais do II Brazilian workshop on artificial intelligence in finance (BWAIF 2023). Sociedade Brasileira de Computacao. 2023. P. 37–48.
Schimanski T., Reding A., Reding N., Bingler J., Kraus M., Leippold M. Bridging the gap in ESG measurement: Using NLP to quantify environmental, social, and governance communication // Finance Research Letters. 2024. Vol. 61. Art. N 104979. https://doi.org/10.1016/j.frl.2024.104979
Hernandez W., Tylinski K., Moore A., Roche N., Vadgama N., Treiblmaier H., Shangguan J., Tasca P., Xu J. Evolution of ESG-focused DLT research: An NLP analysis of the literature // arXiv preprint. arXiv: 2308.12420, 2023. https://arxiv.org/abs/2308.12420v3
Mehra S., Louka R., Zhang Y. ESGBERT: Language model to help with classification tasks related to companies’ environmental, social, and governance practices // Computer Science & Information Technology. 2022. P. 183–190. https://doi.org/10.5121/csit.2022.120616
Lee H., Lee S. H., Park H., Kim J. H., Jung H. S. ESG2PreEM: Automated ESG grade assessment framework using pre-trained ensemble models // Heliyon. 2024. Vol. 10. Iss. 4. Art. N e26404. https://doi.org/10.1016/j.heliyon.2024.e26404
Pontes E. L., Benjannet M., Ming L. K. Leveraging BERT language models for multi-lingual ESG issue identification // Proceedings of 5th Workshop on Financial Technology and Natural Language Processing and the 2nd Multimodal AI For Financial Forecasting (FinNLP). Macao: Association for Computational Linguistics, 2023. P. 121–126. URL: https://aclanthology.org/2023.finnlp-1.13/ (дата обращения: 15 ноября 2024 г.).
Kannan N., Seki Y. Textual evidence extraction for ESG scores // Proceedings of 5th Workshop on Financial Technology and Natural Language Processing and the 2nd Multimodal AI For Financial Forecasting (FinNLP). Macao: Association for Computational Linguistics, 2023. P. 45–54. URL: https://aclanthology.org/2023.finnlp-1.4/ (дата обращения: 15 ноября 2024 г.).
Goel T., Chauhan V., Sangwan S., Verma I., Dasgupta T., Dey L. TCS WITM 2022@FinSim4-ESG: Augmenting BERT with linguistic and semantic features for ESG data classification // Proceedings of 4th Workshop on Financial Technology and Natural Language Processing (FinNLP). Abu Dhabi, United Arab Emirates: Association for Computational Linguistics, 2022. P. 235–242. URL: https://aclanthology.org/2022.finnlp-1.32/ (дата обращения: 15 ноября 2024 г.).
Banerjee N., Sarkar A., Chakraborty S., Ghosh S., Naskar S. Fine-tuning language models for predicting the impact of events associated to financial news articles // Proceedings of Joint Workshop of the 7th Financial Technology and Natural Language Processing, the 5th Knowledge Discovery from Unstructured Data in Financial Services, and the 4th Workshop on Economics and Natural Language Processing (FinNLP). Torino, Italia: Association for Computational Linguistics, 2024. P. 244–247. URL: https://aclanthology.org/2024.finnlp-1.25/ (дата обращения: 15 ноября 2024 г.).
Pasch S., Ehnes D. NLP for responsible finance: Fine-tuning transformer-based models for ESG // 2022 International Conference on Big Data (IEEE 2022). 2022. Vol. 33. P. 3532–3536.
Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A. N., Kaiser L., Polosukhin I. Attention is all you need // Advances in Neural Information Processing Systems. 2017. Vol. 30. URL: https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-linebreak Paper.pdf (дата обращения: 15 ноября 2024 г.)
Reimers N., Gurevych I. Sentence embeddings using Siamese BERT-Networks // Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association for Computational Linguistics, 2019. P. 3982–3992. https://doi.org/10.18653/v1/D19-1410.
Kuratov Y., Arkhipov M. Adaptation of deep bidirectional multilingual transformers for russian language // arXiv preprint. arXiv: 1905.07213, 2023. https://arxiv.org/abs/1905.07213v1
Ци Д., Буре В. М. Исследование инвестиционной привлекательности на основе кластерного анализа // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2023. Т. 19. Вып. 2. С. 199–211. https://doi.org/10.21638/11701/spbu10.2023.206
References
Gao W., Liu Z. Green credit and corporate ESG performance: Evidence from China. Finance Research Letters, 2023, vol. 55. art. no. 103940.
Devlin J., Chang M.-W., Lee K., Toutanova K. BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint. arXiv: 1810.04508, 2019. https://arxiv.org/abs/1810.04805v2
Singh A. K., Zhang Y., Anu. Understanding the evolution of environment, social and governance research: Novel implications from bibliometric and network analysis. Evaluation Review, 2022, vol. 47, no. 2, pp. 350–386.
Pavani K. A study on risk assessment and financial management on ESG. International Journal of Research Publication and Reviews, 2024, vol. 5, no. 5, pp. 3624–3632.
De Giuli M. E., Grechi D., Tanda A. What do we know about ESG and risk? A systematic and bibliometric review. Corporate Social Responsibility and Environmental Management, 2023, vol. 31, no. 2, pp. 1096–1108.
Tiwari R., Sharma N., Sharma N. K. Categorizing and understanding the evolution of literature on ESG investments: A bibliometric analysis. A Journal of Business Perspective, 2023. https://doi.org/10.1177/09722629.231197574
Kansal P., Malhotra K., Neelam. Recent trends on Environmental, Social and Governance Research: A bibliometric analysis. Metamorphosis: A Journal of Management Research, 2024, vol. 23, no. 1, pp. 7–22.
Ziolo M., Bak I., Spoz A. Incorporating ESG risk in companies’ business models: State of research and energy sector case studies. Energies, 2023, vol. 16, no. 4, art. no. 1809.
Augustin B., Julsain H., Sager M. Integrating ESG risk analysis into a macro investment strategy. CIBC Asset Management Team Report — CIBC, 2021. Available at: https://www.cibc.com/en/asset-management/insights/responsible-investing/integrating-esg-risk-analysis. html (accessed: November 15, 2024).
Gallucci C., Santulli R., Lagasio V. The conceptualization of Environmental, Social and Governance risks in portfolio studies: A systematic literature review. Socio-economic Planning Sciences, 2022, vol. 84, art. no. 101382.
Sokolov A., Mostovoy J., Ding J., Seco L. Building machine learning systems for automated ESG scoring. The Journal of Impact and ESG Investing, 2021, vol. 1, no. 3, pp. 39–50.
Sokolov A., Mostovoy J., Ding J., Seco L. Building machine learning systems for automated ESG scoring. The Journal of Impact and ESG Investing, 2021, vol. 1, iss. 3, pp. 39–50. https://doi.org/10.3905/jesg.2021.1.010
Luccioni A., Baylor E., Duchene N. Analyzing sustainability reports using natural language processing. arXiv preprint. arXiv: 2011.08073, 2020. https://arxiv.org/abs/2011.08073v2
Yim T. Y., Zhang Y., Tan W., Lam T.-W., Yiu S. M. Meticulously analyzing ESG disclosure: A data-driven approach. 2023 International Conference on Big Data (IEEE 2023), 2023, pp. 2884–2889.
Yang W., Rong X. Duration dynamics: Fin-turbo’s rapid route to ESG impact insight. Proceedings of Joint Workshop of the 7th Financial Technology and Natural Language Processing, the 5th Knowledge Discovery from Unstructured Data in Financial Services, and the 4th Workshop on Economics and Natural Language Processing (FinNLP). Torino, Italia, Association for Computational Linguistics Publ., 2024, pp. 188–196. Available at: https://aclanthology.org/2024.finnlp-1.18/ (accessed: November 15, 2024).
Ruberg N., Pereira R. B., Stein M. L. GreenAI — An NLP approach to ESG financing. Anais do II Brazilian Workshop on Artificial Intelligence in Finance (BWAIF 2023). Sociedade Brasileira de Computacao, 2023, pp. 37–48.
Schimanski T., Reding A., Reding N., Bingler J., Kraus M., Leippold M. Bridging the gap in ESG measurement: Using NLP to quantify environmental, social, and governance communication. Finance Research Letters, 2024, vol. 61, art. no. 104979. https://doi.org/10.1016/j.frl.2024.104979
Hernandez W., Tylinski K., Moore A., Roche N., Vadgama N., Treiblmaier H., Shangguan J., Tasca P., Xu J. Evolution of ESG-focused DLT research: An NLP analysis of the literature. arXiv preprint. arXiv: 2308.12420, 2023. https://arxiv.org/abs/2308.12420v3
Mehra S., Louka R., Zhang Y. ESGBERT: Language model to help with classification tasks related to companies’ environmental, social, and governance practices. Computer Science $&$ Information Technology, 2022, pp. 183–190. https://doi.org/10.5121/csit.2022.120616
Lee H., Lee S. H., Park H., Kim J. H., Jung H. S. ESG2PreEM: Automated ESG grade assessment framework using pre-trained ensemble models. Heliyon, 2024, vol. 10, iss. 4, art. no. e26404. https://doi.org/10.1016/j.heliyon.2024.e26404
Pontes E. L., Benjannet M., Ming L. K. Leveraging BERT language models for multi-lingual ESG issue identification. Proceedings of 5th Workshop on Financial Technology and Natural Language Processing and the 2nd Multimodal AI For Financial Forecasting (FinNLP). Macao, Association for Computational Linguistics Publ., 2023, pp. 121–126. Available at: https://aclanthology.org/2023.finnlp-1.13/ (accessed: November 15, 2024).
Kannan N., Seki Y. Textual evidence extraction for ESG scores. Proceedings of 5th Workshop on Financial Technology and Natural Language Processing and the 2nd Multimodal AI For Financial Forecasting (FinNLP). Macao, Association for Computational Linguistics Publ., 2023, pp. 45–54. Available at: https://aclanthology.org/2023.finnlp-1.4/ (accessed: November 15, 2024).
Goel T., Chauhan V., Sangwan S., Verma I., Dasgupta T., Dey L. TCS WITM 2022@FinSim4-ESG: Augmenting BERT with linguistic and semantic features for ESG data classification. Proceedings of 4th Workshop on Financial Technology and Natural Language Processing (FinNLP). Abu Dhabi, United Arab Emirates, Association for Computational Linguistics Publ., 2022, pp. 235–242. Available at: https://aclanthology.org/2022.finnlp-1.32/ (accessed: November 15, 2024).
Banerjee N., Sarkar A., Chakraborty S., Ghosh S., Naskar S. Fine-tuning language models for predicting the impact of events associated to financial news articles. Proceedings of Joint Workshop of the 7th Financial Technology and Natural Language Processing, the 5th Knowledge Discovery from Unstructured Data in Financial Services, and the 4th Workshop on Economics and Natural Language Processing (FinNLP). Torino, Italia, Association for Computational Linguistics Publ., 2024, pp. 244–247. Available at: https://aclanthology.org/2024.finnlp-1.25/ (accessed: November 15, 2024).
Pasch S., Ehnes D. NLP for responsible finance: Fine-tuning transformer-based models for ESG. 2022 International Conference on Big Data (IEEE 2022), 2022, vol. 33, pp. 3532–3536.
Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A. N., Kaiser L., Polosukhin I. Attention is all you need. Advances in Neural Information Processing Systems, 2017, vol. 30. Available at: https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf (accessed: November 15, 2024).
Reimers N., Gurevych I. Sentence embeddings using Siamese BERT-Networks. Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China, Association for Computational Linguistics, 2019, pp. 3982–3992. https://doi.org/10.18653/v1/D19-1410.
Kuratov Y., Arkhipov M. Adaptation of deep bidirectional multilingual transformers for Russian language. arXiv preprint. arXiv: 1905.07213, 2023. http://arxiv.org/abs/1905.07213
Qi D., Bure V. M. Issledovanie investitsionnoi privlekatel'nosti na osnove klasternogo analiza [Research of investment attractiveness based on cluster analysis]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2023, vol. 19, iss. 2, pp. 199–211. https://doi.org/10.21638/11701/spbu10.2023.206 (In Russian)
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Статьи журнала «Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления» находятся в открытом доступе и распространяются в соответствии с условиями Лицензионного Договора с Санкт-Петербургским государственным университетом, который бесплатно предоставляет авторам неограниченное распространение и самостоятельное архивирование.