Интегральная модель притока и оттока и ее приложения
DOI:
https://doi.org/10.21638/spbu10.2024.201Аннотация
Описана общая интегральная модель притока и оттока динамической системы, параметры которой имеют стохастический характер. Для такого типа динамических систем формулируется общий принцип динамического баланса, а также вводятся понятия интервальной динамической сбалансированности интегральных объемов притока и оттока и характеристики динамического баланса. Класс стохастических динамических процессов и систем притока и оттока, удовлетворяющих принципу динамического баланса, достаточно широк (распространение эпидемий вирусов и динамика заболеваемости в медицине, процессы изменения численности и структуры населения в демографии, динамика спроса-предложения в экономике и т. д.). Возможности применения предлагаемой модели для построения кратко- и долгосрочных прогнозов демонстрируются на примерах распространения эпидемии COVID-19 в Москве и Санкт-Петербурге, а также прогнозирования роста населения Земли и отдельных стран. Приводятся результаты вычислительных экспериментов по построению ретроспективных прогнозов состояния динамических систем с использованием метода динамических трендов стохастических параметров интегральной модели и классического метода ARIMA. Проводится сравнительный анализ точности прогнозирования.
Ключевые слова:
динамические системы притока и оттока, принцип динамического баланса, характеристика динамического баланса, математическое моделирование, прогнозирование
Скачивания
Библиографические ссылки
Moftakhar L., Seif M., Safe M. S. Exponentially increasing trend of infected patients with COVID-19 in Iran: a comparison of neural network and ARIMA forecasting models // Iran Journal of Public Health. 2020. Vol. 9. P. 92–100.
Ahmar A. S., del Val E. B. SutteARIMA: short-term forecasting method, a case: COVID-19 and stock market in Spain // Science of the Total Environment. 2020. Vol. 729. Art. N 138883.
Chaudhry R. M., Hanif A., Chaudhary M., Minhas S. 2nd, Mirza K., Ashraf T., Gilani S. A., Kashif M. Coronavirus disease 2019 (COVID-19): Forecast of an emerging urgency in Pakistan // Cureus. 2020. Vol. 12. N 5. Art. N e8346.
Tandon H., Ranjan P., Chakraborty T., Suhag V. Coronavirus (COVID-19): Arima based time-series analysis to forecast near future and the effect of school reopening in India // Journal of Health Management. 2022. Vol. 24. Iss. 3. P. 373–388.
Earnest A., Chen M. I., Ng D., Leo Y. S. Using autoregressive integrated moving average (ARIMA) models to predict and monitor the number of beds occupied during a SARS outbreak in a tertiary hospital in Singapore // BMC Health Services Research. 2005. Vol. 5. Art. N 36.
Li X. J., Kang D. M., Cao J., Wang J. Z. A time series model in incidence forecasting of hemorrhagic fever with renal syndrome // Journal of Shandong University (Health Sciences). 2008. Vol. 46. N 5. P. 547–549.
Heisterkamp S. H., Dekkers A. L., Heijne J. C. Automated detection of infectious disease outbreaks: hierarchical time series models // Statistics in Medicine. 2003. Vol. 25. N 24. P. 4179–96.
Zhang G. P. Time series forecasting using a hybrid ARIMA and neural network model // Neurocomputing. 2003. Vol. 50. P. 159–175.
De Beer J. Projecting age-specific fertility rates by using time-series methods // European Journal of Population. 1990. Vol. 5. N 4. P. 315–346. pagebreak
Abonazel M., Darwish N. Forecasting confirmed and recovered COVID-19 cases and deaths in Egypt after the genetic mutation of the virus: ARIMA Box-Jenkins approach // Communications in Mathematical Biology and Neuroscience. 2022. Vol. 2022. Art. N 17.
Gecili E., Ziady A., Szczesniak R. D. Forecasting COVID-19 confirmed cases, deaths and recoveries: revisiting established time series modeling through novel applications for the USA and Italy // PLoS One. 2021. Vol. 16. N 1. Art. N e0244173.
Singh S., Parmar K. S., Makkhan S. J. S., Kaur J., Peshoria S., Kumar J. Study of ARIMA and least square support vector machine (LS-SVM) models for the prediction of SARS-CoV-2 confirmed cases in the most affected countries // Chaos, Solitons and Fractals. 2020. Vol. 139. Art. N 110086.
Aditya S. C. B., Darmawan W., Nadia B. U., Hanafiah N. Time series analysis and forecasting of coronavirus disease in Indonesia using ARIMA model and PROPHET // Procedia Computer Science. 2021. Vol. 179. P. 524–532.
Duong N., Phuong Th. L., Nhu Q. D., Binh L., Ai L. C., Hong D. P. Predicting the pandemic COVID-19 using ARIMA model // VNU Journal of Science: Mathematics — Physics. 2020. Vol. 36. N 4. Art. N 4492.
Claris S., Peter N. ARIMA model in predicting of COVID-19 epidemic for the Southern Africa region // African Journal of Infectious Diseases. 2022. Vol. 17. N 1. P. 1–9.
Захаров В. В. Принцип динамического баланса демографического процесса и пределы роста населения Земли // Докл. РАН. Математика, информатика, процессы управления. 2023. Т. 15. C. 108–114. https://doi.org/10.31857/S2686954323600301
Kermack W. O., McKendrick A. G. A contribution to the mathematical theory of epidemics // Proceedings of the Royal Society A. 1927. Vol. 115. P. 700–721.
Anderson R. M., May R. M. Infectious diseases of humans: Dynamics and control. Oxford: Oxford University Press, 1991. 757 p.
United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Methodology of the United Nations population estimates and projections. New York: United Nations Publ., 2022. 64 p.
Захаров В. В., Ндиайе С. М. Прогнозирование численности населения и динамические игры против природы // Математическая теория игр и еe приложения. 2024. Т. 16. № 1. C. 17–37.
References
Moftakhar L., Seif M., Safe M. S. Exponentially increasing trend of infected patients with COVID-19 in Iran: a comparison of neural network and ARIMA forecasting models. Iran Journal of Public Health, 2020, vol. 9, pp. 92–100.
Ahmar A. S., del Val E. B. SutteARIMA: short-term forecasting method, a case: COVID-19 and stock market in Spain. Science of the Total Environment, 2020, vol. 729, art. no. 138883.
Chaudhry R. M., Hanif A., Chaudhary M., Minhas S. 2nd, Mirza K., Ashraf T., Gilani S. A., Kashif M. Coronavirus Disease 2019 (COVID-19): Forecast of an Emerging urgency in Pakistan. Cureus, 2020, vol. 12, iss. 5, art. no. e8346.
Tandon H., Ranjan P., Chakraborty T., Suhag V. Coronavirus (COVID-19): Arima based time-series analysis to forecast near future and the effect of school reopening in India. Journal of Health Management, 2022, vol. 24, iss. 3, pp. 373–388.
Earnest A., Chen M. I., Ng D., Leo Y. S. Using autoregressive integrated moving average (ARIMA) models to predict and monitor the number of beds occupied during a SARS outbreak in a tertiary hospital in Singapore. BMC Health Services Research, 2005, vol. 5, art. no. 36.
Li X. J., Kang D. M., Cao J., Wang J. Z. A time series model in incidence forecasting of hemorrhagic fever with renal syndrome. Journal of Shandong University (Health Sciences), 2008, vol. 46, no. 5, pp. 547–549.
Heisterkamp S. H., Dekkers A. L., Heijne J. C. Automated detection of infectious disease outbreaks: hierarchical time series models. Statistics in Medicine, 2003, vol. 25, no. 24, pp. 4179–96.
Zhang G. P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 2003, vol. 50, pp. 159–175.
De Beer J. Projecting age-specific fertility rates by using time-series methods. European Journal of Population, 1990, vol. 5, no. 4, pp. 315–346.
Abonazel M., Darwish N. Forecasting confirmed and recovered COVID-19 cases and deaths in Egypt after the genetic mutation of the virus: ARIMA Box-Jenkins approach. Communications in Mathematical Biology and Neuroscience, 2022, vol. 2022, art. no. 17.
Gecili E., Ziady A., Szczesniak R. D. Forecasting COVID-19 confirmed cases, deaths and recoveries: revisiting established time series modeling through novel applications for the USA and Italy. PLoS One, 2021, vol. 16, no. 1, art. no. e0244173.
Singh S., Parmar K. S., Makkhan S. J. S., Kaur J., Peshoria S., Kumar J. Study of ARIMA and least square support vector machine (LS-SVM) models for the prediction of SARS-CoV-2 confirmed cases in the most affected countries. Chaos, Solitons and Fractals, 2020, vol. 139, art. no. 110086.
Aditya S. C. B., Darmawan W., Nadia B. U., Hanafiah N. Time series analysis and forecasting of coronavirus disease in Indonesia using ARIMA model and PROPHET. Procedia Computer Science, 2021, vol. 179, pp. 524–532.
Duong N., Phuong Th. L., Nhu Q. D., Binh L., Ai L. C., Hong D. P. Predicting the pandemic COVID-19 using ARIMA model. VNU Journal of Science: Mathematics — Physics, 2020, vol. 36, no. 4, art. no. 4492.
Claris S., Peter N. ARIMA model in predicting of COVID-19 epidemic for the Southern Africa region. African Journal of Infectious Diseases, 2022, vol. 17, no. 1, pp. 1–9.pagebreak
Zaharov V. V. Printcip dinamicheskogo balansa demograficheskogo processa i predely rosta zemli [Dynamic balance principle of the demographic process and the limits of earth population growth]. Papers of Russian Academy of Sciences, 2023, vol. 15, pp. 108–114. https://doi.org/10.31857/S2686954323600301 (In Russian)
Kermack W. O., McKendrick A. G. A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society A, 1927, vol. 115, pp. 700–721.
Anderson R. M., May R. M. Infectious diseases of humans: Dynamics and control. Oxford, Oxford University Press, 1991, 757 p.
United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Methodology of the United Nations population estimates and projections. New York, United Nations Publ., 2022, 64 p.
Zaharov V. V., Ndiaye S. M. Prognozirovanie chislennosti naseleniya i dinamicheskie igry protiv prirody [Population growth forecasting and dynamic games against nature]. Mathematical Game Theory and its Applications, 2024, vol. 16, no. 1, pp. 17–37. (In Russian)
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Статьи журнала «Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления» находятся в открытом доступе и распространяются в соответствии с условиями Лицензионного Договора с Санкт-Петербургским государственным университетом, который бесплатно предоставляет авторам неограниченное распространение и самостоятельное архивирование.