Optimal control of the stress-deformed states of a composite layered medium

Authors

  • Aleksei P. Zhabko St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Vyacheslav V. Provotorov Voronezh State University, 1, Universitetskaja pl., Voronezh, 394006, Russian Federation
  • Elena V. Igonina Yelets State University, 28, Kommunarov ul., Yelets, 399770, Russian Federation https://orcid.org/0000-0002-7369-6219
  • Sergey M. Sergeev Peter the Great St. Petersburg Polytechnic University, 29, Politehnicheskaya ul., St. Petersburg, 195251, Russian Federation https://orcid.org/0000-0003-0195-4589

DOI:

https://doi.org/10.21638/spbu10.2024.408

Abstract

The proposed study considers the compositional medium, which is a set of a finite number of volumetric layers with clearly defined surfaces of mutual adjacency. The mathematical description of such a medium is carried out by means of a layered domain, which defines a model of a layered elastic compositional medium in three-dimensional Euclidean space. Functions describing the quantitative characteristics of the material of the compositional medium belong to the class of bounded summable functions that have generalized derivatives and are elements of Sobolev space. At the same time, the following hypothesis is adopted: the elements of the surfaces of mutual adjoining layers are not subject to tension and compression during deformation (bending) (analogous to one of the well-known Kirchhoff hypotheses). The work consists of three parts: the first part presents a mathematical description of a layered medium with the terminology of layered domains, classical function spaces with a carrier in these domains, a description of phenomena near the surfaces of adjoining layers of a compositional medium; the second part is devoted to the description of deformations of the compositional medium and contains the formulation of the problem of the stress-deformed state of the compositional layered medium in a weak formulation, the definitions of auxiliary spaces and the classical statements used to analyze the problem, sufficient conditions for the weak solvability of the boundary value problem are established; the third (main) part is devoted to solving the problem of optimal distributed control of stress-deformed states of a compositional layered medium. The results of the study can be effectively used to solve the problems of optimal control of deformation processes of complexly structured continuous media. At the same time, the approaches used to analyze boundary value problems of continuum mechanics extend to more general representations of the components of the tensor function of deformations, which means that they can significantly expand the possibilities of analyzing more general problems of optimizing deformable composite materials.

Keywords:

stress-deformed state of composite materials, boundary value problem in the layered domain, weak solvability, optimal control of deformations the layered composite

Downloads

Download data is not yet available.
 

References

Литература

Литвинов В. Г. Оптимизация в эллиптических граничных задачах с приложениями к механике. М.: Наука, 1987. 368 с.

Дюво Г., Лионс Ж.-Л. Неравенства в механике и физике / пер. с фр. С. Ю. Прищепионка, Т. Н. Рожковской. М.: Наука, 1989. 384 с.

Zhabko A. P., Karelin V. V., Provotorov V. V., Sergeev S. M. Optimal control of thermal and wave processes in composite materials // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2023. Т. 19. Вып. 3. С. 403–418. https://doi.org/10.21638/11701/spbu10.2023.303

Zhabko A. P., Shindyapin A. I., Provotorov V. V. Stability of weak solutions of parabolic systems with distributed parameters on the graph // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2019. Т. 15. Вып. 4. С. 457–471. https://doi.org/10.21638/11701/spbu10.2019.404

Провоторов В. В., Сергеев С. М. Математическое моделирование физических процессов в композиционных средах // Вестник российских университетов. Математика. 2024. Т. 29. Вып. 146. С. 188–203.

Lax P. D., Milgram N. Parabolic equations. Contributions to the theory of partial differential // Ann. Math. Studies. 1954. Vol. 33. P. 167–190.

Бесов О. В., Ильин В. П., Никольский С. М. Интегральные представления функций и теоремы вложения. М.: Наука, 1975. 480 с.

Hlavacek I., Necas J. On inequalities of Korn's type // Arch. Rat. Mech. and Anal. 1970. Vol. 36. N 4. P. 305–334.

Гольденблат И. И., Копнов В. А. Критерий прочности и пластичности конструкционных материалов. М.: Машиностроение, 1968. 192 с.

Golosnoy A. S., Provotorov V. V., Sergeev S. M., Raikhelgauz L. B., Kravets O. Ja. Software engineering math for network applications // Journal of Physics: Conference Series. 2019. Vol. 1399. N 4. Art. N 044047. https://doi.org/10.1088/1742-6596/1399/4/044047

Baranovskii E. S., Artemov M. A., Provotorov V. V., Zhabko A. P. Non-isothermal creeping flows in a pipeline network: Existence results // Symmetry. 2021. Vol. 13. N 7. Art. ID 1300. https://doi.org/10.3390/sym13071300

Zhabko A. P., Provotorov V. V., Shindyapin A. I. Optimal control of a differential-difference parabolic system with distributed parameters on the graph // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2021. Т. 17. Вып. 4. С. 433–448. https://doi.org/10.21638/11701/spbu10.2021.411

Алфутов Н. А., Болотин В. В., Васильев В. В., Протасов В. Д., Тарнопольский Ю. М., Царахов Ю. С. Композиционные материалы: Справочник. М.: Машиностроение, 1990. 512 с.


References

Litvinov V. G. Optimizatsiya v ellipticheskih granichnih zadachah s prilozeniiami k mehanike [Optimization in elliptic boundary problems with applications in mechanics]. Moscow, Nauka Publ., 1987, 368 p. (In Russian)

Duvaut G., Lions J.-L. Neravenstva v mehanike i fizike [Les inequations en mecanique et en physique]. Moscow, Nauka Publ., 1989, 384 p. (In Russian)

Zhabko A. P., Karelin V. V., Provotorov V. V., Sergeev S. M. Optimal control of thermal and wave processes in composite materials. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2023, vol. 19, iss. 3, pp. 403–418. https://doi.org/10.21638/11701/spbu10.2023.303

Zhabko A. P., Shindyapin A. I., Provotorov V. V. Stability of weak solutions of parabolic systems with distributed parameters on the graph. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2019, vol. 15, iss. 4, pp. 457–471. https://doi.org/10.21638/11701/spbu10.2019.404

Provotorov V. V., Sergeev S. M. Matematicheskoe modelirovanie fizicheskih protsessov v kompozitsionnih sredah [Mathematical modeling of physical processes in composite media]. Russian Universities Reports. Mathematics, 2024, vol. 29, iss. 146, pp. 188–203. (In Russian)

Lax P. D., Milgram N. Parabolic equations. Contributions to the theory of partial differential. Ann. Math. Studies, 1954, vol. 33, pp. 167–190.

Besov O. V., Il'in V. P., Nikol'skii S. M. Integral'nie predstavleniia funktsii i teoremi vlozheniia [Integral representations of functions and embedding theorems]. Moscow, Nauka Publ., 1975, 480 p. (In Russian)

Hlavacek I., Necas J. On inequalities of Korn's type. Arch. Rat. Mech. and Anal., 1970, vol. 36, no. 4, pp. 305–334.

Gol'denblat I. I., Kopnov V. A. Kriterii prochnosti i plastichnosti konstruktsionnih materialov [Criterion of strength and plasticity of structural materials]. Moscow, Mashinostroenie Publ., 1968, 192 p. (In Russian)

Golosnoy A. S., Provotorov V. V., Sergeev S. M., Raikhelgauz L. B., Kravets O. Ja. Software engineering math for network applications. Journal of Physics: Conference Series, 2019, vol. 1399, no. 4, art. ID 044047. https://doi.org/10.1088/1742-6596/1399/4/044047

Baranovskii E. S., Artemov M. A., Provotorov V. V., Zhabko A. P. Non-isothermal creeping flows in a pipeline network: Existence results. Symmetry, 2021, vol. 13, no. 7, art. ID 1300. https://doi.org/10.3390/sym13071300

Zhabko A. P., Provotorov V. V., Shindyapin A. I. Optimal control of a differential-difference parabolic system with distributed parameters on the graph. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2021, vol. 17, iss. 4, pp. 433–448. https://doi.org/10.21638/11701/spbu10.2021.411

Alfutov N. A., Bolotin V. V., Vasil'ev V. V., Protasov V. D., Tarnopol'skii Ju. M., Carahov Ju. S. Kompozicionnie materiali. Spravochnik [Composite materials. Handbook]. Moscow, Mashinostroenie Publ., 1990, 512 p. (In Russian)

Published

2024-12-30

How to Cite

Zhabko, A. P., Provotorov , V. V., Igonina, E. V., & Sergeev, S. M. (2024). Optimal control of the stress-deformed states of a composite layered medium. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 20(4), 534–549. https://doi.org/10.21638/spbu10.2024.408

Issue

Section

Control Processes

Most read articles by the same author(s)