The stability of differential-difference systems with linearly increasing delay. II. Systems with additive right side

Authors

  • Alexander V. Ekimov St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation
  • Aleksei P. Zhabko St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation
  • Pavel V. Yakovlev St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-1997-330X

DOI:

https://doi.org/10.21638/11701/spbu10.2023.101

Abstract

The article considers an uncontrolled system of differential-difference equations with a homogeneous additive right side and linearly increasing delay. Sufficient conditions for asymptotic stability are known for a number of special cases of such systems. Razumikhin's theorem on the asymptotic stability of homogeneous systems with proportional delay is formulated. Sufficient conditions for asymptotic stability are obtained basing on the asymptotic stability of the initial system without delay and constructing the Lyapunov function.

Keywords:

system of linear differential-differencel equations, linearly increasing, time delay, asymptotic stability, homogeneous system

Downloads

Download data is not yet available.
 

References

Литература

Жабко А. П., Чижова О. Н. Анализ устойчивости однородного дифференциально-разностного уравнения с линейным запаздыванием // Вестник Санкт-Петербургского университета. Сер. 10. Прикладная математика. Информатика. Процессы управления. 2015. Вып. 3. С. 105-115.

Екимов А. В., Чижова О. Н., Зараник У. П. Устойчивость однородных нестационарных систем дифференциально-разностных уравнений с линейно возрастающим запаздыванием // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2019. Т. 15. Вып. 4. С. 415-424. https://doi.org/10.21638/11702/spbu10.2019.401

Екимов А. В., Жабко А. П., Яковлев П. В. Устойчивость дифференциально-разностных систем с линейно возрастающим запаздыванием. I. Линейные управляемые системы // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2020. Т. 16. Вып. 3. С. 316-325. https://doi.org/10.21638/11701/spbu10.2020.308

Alexandrova I. V., Zhabko A. P. At the junction of Lyapunov - Krasovskii and Razumikhin approaches // IFACPapersOnLine. 2018. Vol. 51. N 14. P. 147-152.

Rosier L. Homogeneous Lyapunov function for homogeneous continuous vector field // Systems & Control Letters. 1992. Vol. 19. P. 467-473.

Александров А. Ю., Жабко А. П., Печерский Б. С. Функционалы полного типа для некоторых классов однородных дифференциально-разностных систем // Труды 8-й Междунар. конференции "Современные методы прикладной математики, теории управления и компьютерных технологий". Воронеж: Научная книга, 2015. С. 5-8.

Александров A. Ю., Жабко A. П. Об асимптотической устойчивости решений нелинейных систем с запаздыванием // Сиб. мат. журн. 2012. Т. 53. № 3. С. 393-403.

Zhabko A., Chizhova O., Zaranik U. Stability analysis of the linear time delay systems with linearly increasing delay // Cybernetics and Physics. 2016. Vol. 5. N 2. P. 67-72.

Зубов В. И. Устойчивость движения. М.: Высшая школа, 1984. 232 с.

References

Zhabko A. P., Chizhova O. N. Analiz ustojchivosti odnorodnogo differencial’no-raznostnogo uravnenija s linejnym zapazdyvaniem [Stability analysis of homogeneous differential-difference equation with linear delay]. Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Sciences. Control Processes, 2015, iss. 3, pp. 105-115. (In Russian)

Ekimov A. V., Chizhova O. N., Zaranik U. P. Ustoichivost odnorodnykh nestatsionarnykh system differentsial'no-raznostnykh uravnenij s linejno vozrastajushim zapazdyvaniem [Stability of homogeneous nonstationary systems of differential-difference equations with linearly time delay]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Sciences. Control Processes, 2019, vol. 15, iss. 4, pp. 415-424. https://doi.org/10.21638/11701/spbu10.2019.401 (In Russian)

Ekimov A. V., Zhabko A. P., Yakovlev P. V. Ustoichivost’ differencial’no-raznostnykh system s lineyno vozrastayushim zapazdyvaniem. I. Lineynye upravlyaemye systemy [The stability of differential-difference equations with proportional time delay. I. Linear controlling systems]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2020, vol. 16, iss. 3, pp. 316-325. https://doi.org/10.21638/11701/spbu10.2020.308 (In Russian)

Alexandrova I. V., Zhabko A. P. At the junction of Lyapunov - Krasovskii and Razumikhin approaches. IFACPapersOnLine, 2018, vol. 51, no. 14, pp. 147-152.

Rosier L. Homogeneous Lyapunov function for homogeneous continuous vector field. Systems Control Letters, 1992, vol. 19, pp. 467-473.

Alexandrov A. Y., Zhabko A. P., Pechersky B. S. Funktsionaly polnogo typa dlya nekotorykh classov odnorodnykh differentsialno-raznostnykh system [Functionals of full type for several classes of homogeneous differential-defference systems]. Proceedings of 8th International conference "Modern Methods in Applied Mathematics, Control Theory and Computer Technology". Voronezh, Nauchnaya kniga Publ., 2015, pp. 5-8. (In Russian)

Alexandrov A. Y., Zhabko A. P. Ob asimptoticheskoy ustoichivosty resheniy nelineynykh system s zapazdyvaniem [On asymptotic stability of solution of non linear systems with time delay]. Siberian Mathematical Journal, 2012, vol. 53, no. 3, pp. 393-403. (In Russian)

Zhabko A., Chizhova O., Zaranik U. Stability analysis of the linear time delay systems with linearly increasing delay. Cybernetics and Physics, 2016, vol. 5, no. 2, pp. 67-72.

Zubov V. I. Ustoichivost dvizheniya [ Stobility of motion ]. Moscow, Vysshaya shkola Publ., 1984, 232 p. (In Russian)

Published

2023-04-27

How to Cite

Ekimov, A. V., Zhabko, A. P., & Yakovlev, P. V. (2023). The stability of differential-difference systems with linearly increasing delay. II. Systems with additive right side. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 19(1), 4–9. https://doi.org/10.21638/11701/spbu10.2023.101

Issue

Section

Applied Mathematics

Most read articles by the same author(s)