Modeling the process of filling carbon nanocontainers with hydrogen

Authors

  • Nikolay V. Egorov St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation https://orcid.org/0000-0003-4721-1377
  • Alexander A. Vasilyev St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation https://orcid.org/0000-0003-0762-0491
  • Tatiana A. Andreeva St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation https://orcid.org/0000-0001-7937-3296
  • Marina E. Bedrina St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/11701/spbu10.2022.307

Abstract

The problem of storing and transporting hydrogen in containers based on fullerenes and carbon nanotubes is relevant to hydrogen energy. This problem theoretically can be solved using quantum chemistry methods and powerful computer technology to calculate molecules with a large number of atoms, polymers, nanostructures and nanotubes. It is necessary to create a theoretical model of the electromagnetic field in the cavity of fullerene molecules and nanotubes in order to understand how atoms and molecules of hydrogen or any other substances behave in it. Computer simulation of the filling process by hydrogen molecules fullerenes and nanotubes was performed by quantum mechanics methods DFT with GAUSSIAN 09 program.

Keywords:

hydrogen energy, fullerenes, nanocontainers, quantum mechanics, DFT

Downloads

Download data is not yet available.
 

References

Kovac A., Paranos M., Marcius D. Hydrogen in energy transition: A review. Intern. Journal of Hydrogen Energy, 2021, vol. 46, iss. 16, pp. 10016-10035.

Kuznetsov V. Stereochemistry of simple molecules inside nanotubes and fullerenes: Unusual behavior of usual systems. Molecules, 2020, vol. 25, pp. 24-37.

Tarasov В. P., Goldshleger N. F., Moravsky A. P. Hydrogen-containing carbon nanostructures: synthesis and properties. Russian Chemical Reviews, 2001, vol. 70, iss. 2, pp. 131-146.

Zuttel A., Sudan P., Mauron P., Kioyobayashi T., Emmenegger C., Schlapbach L. Hydrogen storage in carbon nanostructures. Intern. Journal of Hydrogen Energy, 2002, vol. 27, pp. 203-212.

Cao D., Wang W. Storage of hydrogen in single-walled carbon nanotube bundles with optimized parameters: effect of external surfaces. Intern. Journal of Hydrogen Energy, 2007, vol. 32, pp. 1939-1942.

Seung M.L., Kay H.A., Young H.L., Seifert G., Frauenheim T. Novel mechanism of hydrogen storage in carbon nanotubes. Journal of the Korean Physical Society, 2001, vol. 38, pp. 686-691.

Suetin M. V. Numerical study of the processes of absorption, storage and release of hydrogen by fullerenes. Mathematical modeling and boundary value problems. Proceedings of the Second All-Russian Scientific Conference, 2005, pp. 234-237.

Vehvilainen T. T., Ganchenkova M. G., Oikkonen L. E., Nieminen R. M. Hydrogen interaction with fullerenes: From C20 to graphene. Physical Review B, 2011, vol. 84, pp. 085-447.

Dolgonos G. A., Peslherbe G. H. Conventional and density-fitting local Moller —Plesset theory calculations of C-60 and its endohedral H-2@C-60 and 2H(2)@C-60 complexes. Chemical Physics Letters, 2011, vol. 513, iss. 4-6, pp. 236-240.

Cioslowski J. Endohedral chemistry: electronic structures of molecules trapped inside the C6O cage. Journal of the American Chemical Society, 1991, vol. 113, iss. 11, pp. 4139-4141.

Koch W., Holthausen M. A chemist’s guide to density functional theory. Ed. 2. Weinheim, Wiley-VCH Press, 2002, 293 p.

Koch W., Becke A. D., Parr R. G. Density functional theory of electronic structure. The Journal of Physical Chemistry, 1996, vol. 100, iss. 31, pp. 12974-12980.

Kohn W. Electronic structure of matter —wave functions and density functionals. Reviews of Modern Physics, 1999, vol. 71, iss. 5, pp. 1253-1266.

Zhao Y., Truhlar D. G. The M06 suite of density functional for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functional and systematic testing of four M06-class functional and 12 other functional. Theoretical Chemistry Accounts, 2008, vol. 120, pp. 215-241.

Frisch M. J., Trucks G. W., Schlegel H. B. et al. GAUSSIAN-09, Rev. C.01. Wallingford, CT, Gaussian Inc. Press, 2010.

Koch W., Sham L. J. Self-consistend equations including exchange and correlation effects. Physical Review Journals, 1965, vol. 140, iss. 4, pp. 1133-1138.

Vasiliev A. A., Bedrina M. E., Andreeva T. A. The dependence of calculation results on the density functional theory from the means of presenting the wave function. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2018, vol. 14, iss. 1, pp. 51-58. https://doi.org/10.21638/11701/spbu10.2018.106 (In Russian)

Andreeva T. A., Bedrina M. E., Ovsyannikov D. A. Comparative analysis of calculation methods in electron spectroscopy. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2019, vol. 15, iss. 4, pp. 518-528. https://doi.org/10.21638/11702/spbu10.2019.408 (In Russian)

Bedrina M. E., Egorov N. V., Kuranov D. Yu., Semenov S. G. Raschet ftalocianinatov cinka na vysokoproizvoditelnom vychislitelnom komplekse [Calculation metalphthalocyaninatozinc on the high-efficiency computer complex]. Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2011, iss. 3, pp. 13-21. (In Russian)

Raik A. V., Bedrina M. E. Modeling of water adsorption process on crystal surfaces. Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2011, iss. 2, pp. 67-75. (In Russian)

Downloads

Published

2022-09-29

How to Cite

Egorov, N. V., Vasilyev, A. A., Andreeva, T. A., & Bedrina, M. E. (2022). Modeling the process of filling carbon nanocontainers with hydrogen. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 18(3), 379–389. https://doi.org/10.21638/11701/spbu10.2022.307

Issue

Section

Computer Science