Decentralized control algorithms for a group of mobile agents on a line under distributed communication delay

Authors

DOI:

https://doi.org/10.21638/spbu10.2025.110

Abstract

A group of mobile agents on a straight line is studied, the dynamics of which are modeled by second-order integrators. It is assumed that there is a distributed delay in the communication channels between agents. In addition, the case of a switching network topology is considered, and the switching law may be unknown. Decentralized protocols are constructed that ensure both uniform and nonlinear-uniform (uniform with respect to some function) distributions of agents on a given segment of the straight line. It is proved that the convergence of agents to the required distributions is guaranteed for any switching law of connections. To obtain these results, methods of the theory of positive systems, a special approach to the decomposition of mechanical systems, and the Lyapunov direct method are used. Numerical modeling is carried out, confirming the established theoretical conclusions.

Keywords:

network control, mobile agents, double integrators, distributed delay, switchings, Lyapunov — Krasovskii functional

Downloads

Download data is not yet available.
 

References

Литература

Проблемы сетевого управления / под ред. А. Л. Фрадкова. М.; Ижевск: Институт компьютерных исследований, 2015. 392 с.

Oh K.-K., Park M.-C., Ahn H.-S. A survey of multi-agent formation control // Automatica. 2015. Vol. 53. P. 424–440.

Тхай В. Н. Стабилизация колебаний управляемой обратимой механической системы // Автоматика и телемеханика. 2022. № 9. С. 94–108. https://doi.org/10.1134/S0005117922090053

Zhabko A. P., Provotorov V. V., Sergeev S. M. Optimal control of the Navier — Stokes system with a space variable in a network-like domain // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2023. Т. 19. Вып. 4. C. 549–562. https://doi.org/10.21638/11701/spbu10.2023.411

Карпов А. Г., Егоров Н. В. Алгоритмы составления математической модели физических систем с помощью графов // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2024. Т. 20. Вып. 1. C. 10–19. https://doi.org/10.21638/11701/spbu10.2024.102

Муслимов Т. З., Мунасыпов Р. А. Децентрализованное групповое нелинейное управление строем беспилотных летательных аппаратов самолетного типа // Мехатpоника. Автоматизация. Управление. 2020. Т. 21. № 1. С. 43–50.

Wagner I. A., Bruckstein A. M. Row straightening via local interactions // Circuits Systems Signal Process. 1997. Vol. 16. N 2. P. 287–305.

Квинто Я. И., Парсегов С. Э. Равноудаленное расположение агентов на отрезке. Анализ алгоритма и его обобщения // Автоматика и телемеханика. 2012. № 11. С. 30–41.

Aleksandrov A., Fradkov A., Semenov A. Delayed and switched control of formations on a line segment: Delays and switches do not matter // IEEE Transactions on Automatic Control. 2020. Vol. 65. N 2. P. 794–800.

Aleksandrov A., Fradkov A., Semenov A. Delayed and switched deployment of second-order agents on a line segment: Delays and switches do not matter // IEEE Transactions on Automatic Control. 2023. Vol. 68. N 8. P. 4956–4961.

Aleksandrov A. Y., Andriyanova N. R. Distributed algorithms for mobile agent deployment on a line segment under switching topology and communication delays // IEEE Control Systems Letters. 2022. Vol. 6. P. 3218–3223.

Александров А. Ю., Рузин С. Б. Нелинейные алгоритмы управления группой мобильных агентов на отрезке // Мехатроника. Автоматизация. Управление. 2023. Т. 24. № 3. С. 115–121.

Fridman E. Introduction to time-delay systems: Analysis and control. Basel: Birkhauser Press, 2014. 362 p.

Marton L. Control of multi-agent systems with distributed delay // IFAC-PapersOnLine. 2023. Vol. 56. N 2. P. 8542–8547. https://doi.org/10.1016/j.ifacol.2023.10.014

Sipahi R., Atay F., Niculescu S.-I. Stability of traffic flow behavior with distributed delays modeling the memory effects of the drivers // SIAM Journal of Applied Mathematics. 2007. Vol. 68. P. 738–759.

Aleksandrov A. Y., Andriyanova N. R. Stability analysis of switched positive Persidskii systems with distributed and unbounded delays // Advances in Systems Science and Applications. 2024. Vol. 24. N 2. P. 40–53.

Kaszkurewicz E., Bhaya A. Matrix diagonal stability in systems and computation. Boston; Basel; Berlin: Birkhauser Press, 1999. 267 p.

Зубов В. И. Аналитическая динамика гироскопических систем. Л.: Судостроение, 1970. 320 с.

Косов А. А. Исследование устойчивости сингулярных систем методом вектор-функций Ляпунова // Вестник Санкт-Петербургского университета. Сер. 10. Прикладная математика. Информатика. Процессы управления. 2005. Вып. 3–4. C. 123–129.

Aleksandrov A. Yu., Chen Y., Kosov A. A., Zhang L. Stability of hybrid mechanical systems with switching linear force fields // Nonlinear Dynamics and Systems Theory. 2011. Vol. 11. N 1. P. 53–64.


References

Problemy setevogo upravleniya [Problems of network control]. Ed. by A. L. Fradkov. Moscow, Izhevsk, Institute of Computer Sciences Publ., 2015, 392 p. (In Russian)

Oh K.-K., Park M.-C., Ahn H.-S. A survey of multi-agent formation control. Automatica, 2015, vol. 53, pp. 424–440.

Tkhai V. N. Stabilizaciya kolebanii upravlyaemoi obratimoi mekhanicheskoi sistemy [Stabilization of oscillations of a controlled reversible mechanical system]. Automation and Remote Control, 2022, vol. 83, no. 9, pp. 1404–1416. https://doi.org/10.1134/S0005117922090053 (In Russian)

Zhabko A. P., Provotorov V. V., Sergeev S. M. Optimal control of the Navier — Stokes system with a space variable in a network-like domain. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2023, vol. 19, iss. 4, pp. 549–562. https://doi.org/10.21638/11701/spbu10.2023.411

Karpov A. G., Egorov N. V. Algoritmy sostavleniya matematicheskoi modeli fizicheskih sistem s pomoshch'yu grafov [Algorithms for compiling a mathematical model of physical systems using graphs]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2024, vol. 20, iss. 1, pp. 10–19. https://doi.org/10.21638/11701/spbu10.2024.102 (In Russian)

Muslimov T. Z., Munasypov R. A. Decentralizovannoe gruppovoe nelineinoe upravlenie stroem bespilotnyh letatel'nyh apparatov samoletnogo tipa [Decentralized nonlinear group control of fixed-wing UAV formation]. Mehatronika. Avtomatizatsiya. Upravlenie [Mechatronics. Automatization. Control], 2020, vol. 21, no. 1, pp. 43–50. (In Russian)

Wagner I. A., Bruckstein A. M. Row straightening via local interactions. Circuits Systems Signal Process, 1997, vol. 16, no. 2, pp. 287–305.

Kvinto Y. I., Parsegov S. E. Ravnoudalennoe raspolozhenie agentov na otrezke. Analiz algoritma i ego obobshcheniya [Equidistant arrangement of agents on line. Analysis of the algorithm and its generalization]. Automation and Remote Control, 2012, no. 11, pp. 30–41. (In Russian)

Aleksandrov A., Fradkov A., Semenov A. Delayed and switched control of formations on a line segment: Delays and switches do not matter. IEEE Transactions on Automatic Control, 2020, vol. 65, no. 2, pp. 794–800.

Aleksandrov A., Fradkov A., Semenov A. Delayed and switched deployment of second-order agents on a line segment: Delays and switches do not matter. IEEE Transactions on Automatic Control, 2023, vol. 68, no. 8, pp. 4956–4961.

Aleksandrov A. Y., Andriyanova N. R. Distributed algorithms for mobile agent deployment on a line segment under switching topology and communication delays. IEEE Control Systems Letters, 2022, vol. 6, pp. 3218–3223.

Aleksandrov A. Yu., Ruzin S. B. Nelineinye algoritmy upravleniya gruppoi mobil'nyh agentov na otrezke [Nonlinear algorithms for controlling a group of mobile agents on a segment]. Mehatronika. Avtomatizatsiya. Upravlenie [Mechatronics. Automatization. Control], 2023, vol. 24, no. 3, pp. 115–121. (In Russian)

Fridman E. Introduction to time-delay systems: Analysis and control. Basel, Birkhauser Press, 2014, 362 p.

Marton L. Control of multi-agent systems with distributed delay. IFAC-PapersOnLine, 2023, vol. 56, no. 2, pp. 8542–8547. https://doi.org/10.1016/j.ifacol.2023.10.014

Sipahi R., Atay F., Niculescu S.-I. Stability of traffic flow behavior with distributed delays modeling the memory effects of the drivers. SIAM Journal of Applied Mathematics, 2007, vol. 68, pp. 738–759.

Aleksandrov A. Y., Andriyanova N. R. Stability analysis of switched positive Persidskii systems with distributed and unbounded delays. Advances in Systems Science and Applications, 2024, vol. 24, no. 2, pp. 40–53.

Kaszkurewicz E., Bhaya A. Matrix diagonal stability in systems and computation. Boston, Basel, Berlin, Birkhauser Press, 1999, 267 p.

Zubov V. I. Analiticheskaya dinamika giroskopicheskih sistem [Analytical dynamics of gyroscopic systems]. Leningrad, Sudostroenie Publ., 1970, 320 p. (In Russian)

Kosov A. A. Issledovanie ustoichivosti singulyarnyh sistem metodom vektor-funkcii Lyapunova [Investigation of stability of singular systems by the vector Luapunov functions method]. Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2005, iss. 4, pp. 123–129. (In Russian)

Aleksandrov A. Yu., Chen Y., Kosov A. A., Zhang L. Stability of hybrid mechanical systems with switching linear force fields. Nonlinear Dynamics and Systems Theory, 2011, vol. 11, no. 1, pp. 53–64.

Published

2025-05-29

How to Cite

Aleksandrov, A. Y., & Ruzin, S. B. (2025). Decentralized control algorithms for a group of mobile agents on a line under distributed communication delay. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 21(1), 139–150. https://doi.org/10.21638/spbu10.2025.110

Issue

Section

Control Processes