Условия конвергенции непрерывных и дискретных моделей популяционной динамики
DOI:
https://doi.org/10.21638/11701/spbu10.2022.401Аннотация
Рассматриваются некоторые классы непрерывных и дискретных обобщенных вольтерровских моделей популяционной динамики. Предполагается, что между любыми двумя видами в биологическом сообществе установлены отношения типа "симбиоз", "компенсализм" или "нейтрализм". Цель работы --- получение условий, при выполнении которых изучаемые модели обладают свойством конвергенции. Это означает, что исследуемая система имеет ограниченное решение, которое асимптотически устойчиво в целом. Для вывода требуемых условий используются подход В. И. Зубова и его дискретный аналог. Предлагаются способы построения функций Ляпунова, с помощью которых проблема конвергенции для рассматриваемых моделей сводится к вопросу о существовании положительных решений некоторых систем линейных алгебраических неравенств. В случае, когда параметры моделей являются почти периодическими функциями, выполнение полученных условий гарантирует, что предельные ограниченные решения также будут почти периодическими. Приводится пример, иллюстрирующий установленные теоретические выводы.
Ключевые слова:
динамика популяций, конвергенция, почти периодические колебания, асимптотическая устойчивость, функции Ляпунова
Скачивания
Библиографические ссылки
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Статьи журнала «Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления» находятся в открытом доступе и распространяются в соответствии с условиями Лицензионного Договора с Санкт-Петербургским государственным университетом, который бесплатно предоставляет авторам неограниченное распространение и самостоятельное архивирование.