Convergence conditions for continuous and discrete models of population dynamics

Authors

  • Alexander Yu. Aleksandrov St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation https://orcid.org/0000-0001-7186-7996

DOI:

https://doi.org/10.21638/11701/spbu10.2022.401

Abstract

Some classes of continuous and discrete generalized Volterra models of population dynamics are considered. It is supposed that there are relationships of the type "symbiosis", "compensationism" or "neutralism" between any two species in a biological community. The objective of the work is to obtain conditions under which the investigated models possess the convergence property. This means that the studying system admits a bounded solution that is globally asimptotically stable. To determine the required conditions, the V. I. Zubov's approach and its discrete-time counterpart are used. Constructions of Lyapunov functions are proposed, and with the aid of these functions, the convergence problem for the considered models is reduced to the problem of the existence of positive solutions for some systems of linear algebraic inequalities. In the case where parameters of models are almost periodic functions, the fulfilment of the derived conditions implies that limiting bounded solutions are almost periodic, as well. An example is presented illustrating the obtained theoretical conclusions.

Keywords:

population dynamics, convergence, almost periodic oscillations, asymptotic stability, Lyapunov functions

Downloads

Download data is not yet available.
 

References

Литература

Зубов В. И. Колебания в нелинейных и управляемых системах. Л.: Судпромгиз, 1962. 631 с.

Provotorov V. V., Sergeev S. M., Hoang V. N. Point control of a differential-difference system with distributed parameters on the graph // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2021. Т. 17. Вып. 3. C. 277-286. https://doi.org/10.21638/11701/spbu10.2021.305

Zhabko A. P., Provotorov V. V., Ryazhskikh V. I., Shindyapin A. I. Optimal control of a differential-difference parabolic systems with distributed parameters on the graph // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2021. Т. 17. Вып. 4. C. 433-448. https://doi.org/10.21638/11701/spbu10.2021.411

Tkhai V. N. Model with coupled subsystems // Automation and Remote Control. 2013. Vol. 74. N 6. P. 919-931.

Sedighi H. M., Daneshmand F. Nonlinear transversely vibrating beams by the homotopy perturbation method with an auxiliary term // Journal of Applied and Computational Mechanics. 2015. Vol. 1. N 1. P. 1-9.

Park Y., Lee C. Dynamic investigation of non-linear behavior of hydraulic cylinder in mold oscillator using PID control process // Journal of Applied and Computational Mechanics. 2021. Vol. 7. N 1. P. 270-276.

Aleksandrov A. Yu., Stepenko N. A. Stability analysis of gyroscopic systems with delay under synchronous and asynchronous switching // Journal of Applied and Computational Mechanics. 2022. Vol. 8. N 3. P. 1113-1119.

Демидович Б. П. Лекции по математической теории устойчивости. М.: Наука, 1967. 472 с.

Pavlov A., Pogromsky A., van de Wouw N., Nijmeijer H. Convergent dynamics, a tribute to Boris Pavlovich Demidovich // Syst. Control Lett. 2004. Vol. 52. P. 257-261.

Ruffer B., van de Wouw N., Mueller M. Convergent systems vs. incremental stability // Syst. Control Lett. 2013. Vol. 62. P. 277-285.

Chen F. Some new results on the permanence and extinction of nonautonomous Gilpin-Ayala type competition model with delays // Nonlinear Analysis: Real World Applications. 2006. Vol. 7. P. 1205-1222.

Aleksandrov A., Aleksandrova E. Convergence conditions for some classes of nonlinear systems // Syst. Control Lett. 2017. Vol. 104. P. 72-77.

Mei W., Efimov D., Ushirobira R., Aleksandrov A. On convergence conditions for generalized Persidskii systems // Intern. Journal of Robust Nonlinear Control. 2022. Vol. 32. N 6. P. 3696-3713.

Pliss V. A. Nonlocal problems of the theory of oscillations. London: Academic Press, 1966. 306 p.

Атаева Н. Н. Свойство конвергенции для разностных систем // Вестник Санкт-Петербургского университета. Сер. 10. Прикладная математика. Информатика. Процессы управления. 2004. Вып. 4. С. 91-98.

Yakubovich V. Matrix inequalities in stability theory for nonlinear control systems. III. Absolute stability of forced vibrations // {Automation and Remote Control}. 1964. Vol. 7. P. 905-917.

Нгуен Д. Х. Условия конвергенции некоторых классов нелинейных разностных систем // Вестник Санкт-Петербургского университета. Сер. 10. Прикладная математика. Информатика. Процессы управления. 2011. Вып. 2. С. 90-96.

Aleksandrov A. Yu. Some convergence and stability conditions for nonlinear systems // Differ. Equ. 2000. Vol. 36. N 4. P. 613-615.

Kosov A. A., Shchennikov V. N. On the convergence phenomenon in complex almost periodic systems // Differ Equ. 2014. Vol. 50. N 12. P. 1573-1583.

Стрекопытов С. А., Стрекопытова М. В. О конвергенции динамических квазипериодических систем // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2022. Т. 18. Вып. 1. C. 79-86. https://doi.org/10.21638/11701/spbu10.2022.106

Пых Ю. А. Равновесие и устойчивость в моделях популяционной динамики. М.: Наука, 1983. 182 c.

Hofbauer J., Sigmund K. Evolutionary games and population dynamics. Cambridge: Cambridge University Press, 1998. 323 p.

Britton N. F. Essential mathematical biology. London; Berlin; Heidelberg: Springer, 2003. 335 p.

Aleksandrov A. Yu., Aleksandrova E. B., Platonov A. V. Ultimate boundedness conditions for a hybrid model of population dynamics // Proceedings of 21st Mediterranean conference on Control and Automation. June 25-28. 2013. Platanias-Chania, Crite, Greece, 2013. P. 622-627.

Халанай А., Векслер Д. Качественная теория импульсных систем / пер. с румын.; под ред. В. П. Рубаника. М.: Мир, 1971. 312 c.

References

Zubov V. I. Kolebanija v nelinejnyh i upravljaemyh sistemah [ Oscillations in nonlinear and controlled systems ]. Leningrad, Sudpromgiz Publ., 1962, 631 p. (In Russian)

Provotorov V. V., Sergeev S. M., Hoang V. N. Point control of a differential-difference system with distributed parameters on the graph. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes , 2021, vol. 17, iss. 3, pp. 277-286. https://doi.org/10.21638/11701/spbu10.2021.305

Zhabko A. P., Provotorov V. V., Ryazhskikh V. I., Shindyapin A. I. Optimal control of a differential-difference parabolic systems with distributed parameters on the graph. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes , 2021, vol. 17, iss. 4, pp. 433-448. https://doi.org/10.21638/11701/spbu10.2021.411

Tkhai V. N. Model with coupled subsystems. Automation and Remote Control , 2013, vol. 74, no. 6, pp. 919-931.

Sedighi H. M., Daneshmand F. Nonlinear transversely vibrating beams by the homotopy perturbation method with an auxiliary term. Journal of Applied and Computational Mechanics , 2015, vol. 1, no. 1, pp. 1-9.

Park Y., Lee C. Dynamic investigation of non-linear behavior of hydraulic cylinder in mold oscillator using PID control process. Journal of Applied and Computational Mechanics , 2021, vol. 7, no. 1, pp. 270-276.

Aleksandrov A. Yu., Stepenko N. A. Stability analysis of gyroscopic systems with delay under synchronous and asynchronous switching. Journal of Applied and Computational Mechanics , 2022, vol. 8, no. 3, pp. 1113-1119.

Demidovich B. P. Lekcii po matematicheskoj teorii ustojchivosti [ Lectures on mathematical stability theory ]. Moscow, Nauka Publ., 1967, 472 p. (In Russian)

Pavlov A., Pogromsky A., van de Wouw N., Nijmeijer H. Convergent dynamics, a tribute to Boris Pavlovich Demidovich. Syst. Control Lett. , 2004, vol. 52, pp. 257-261.

Ruffer B., van de Wouw N., Mueller M. Convergent systems vs. incremental stability. Syst. Control Lett. , 2013, vol. 62, pp. 277-285.

Chen F. Some new results on the permanence and extinction of nonautonomous Gilpin-Ayala type competition model with delays. Nonlinear Analysis: Real World Applications , 2006, vol. 7, pp. 1205-1222.

Aleksandrov A., Aleksandrova E. Convergence conditions for some classes of nonlinear systems. Syst. Control Lett. , 2017, vol. 104, pp. 72-77.

Mei W., Efimov D., Ushirobira R., Aleksandrov A. On convergence conditions for generalized Persidskii systems. Intern. Journal of Robust Nonlinear Control , 2022, vol. 32, no. 6, pp. 3696-3713.

Pliss V. A. Nonlocal problems of the theory of oscillations . London, Academic Press, 1966, 306 p.

Ataeva N. N. Svojstvo konvergencii dlja raznostnyh sistem [The convergence property for difference systems]. Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes , 2004, iss. 4, pp. 91-98. (In Russian)

Yakubovich V. Matrix inequalities in stability theory for nonlinear control systems. III. Absolute stability of forced vibrations. Automation and Remote Control, 1964, vol. 7, pp. 905-917.

Nguen D. H. Uslovija konvergencii nekotoryh klassov nelinejnyh raznostnyh sistem [Convergence conditions for some classes of nonlinear difference systems]. Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes , 2011, iss. 2, pp. 90-96. (In Russian)

Aleksandrov A. Yu. Some convergence and stability conditions for nonlinear systems. Differ. Equ. , 2000, vol. 36, no. 4, pp. 613-615.

Kosov A. A., Shchennikov V. N. On the convergence phenomenon in complex almost periodic systems. Differ Equ. 2014, vol. 50, no. 12, pp. 1573-1583.

Strekopytov S. A., Strekopytova M. V. O konvergencii dinamicheskih kvaziperiodicheskih system [On the convergence of dynamic quasiperiodic systems]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes , 2022, vol. 18, iss. 1, pp. 79-86. https://doi.org/10.21638/11701/spbu10.2022.106 (In Russian)

Pykh Yu. A. Ravnovesie i ustojchivost' v modeljah populjacionnoj dinamiki } [ Equilibrium and stability in models of population dynamics ]. Moscow, Nauka Publ., 1983, 182 p. (In Russian)

Hofbauer J., Sigmund K. Evolutionary games and population dynamics. Cambridge, Cambridge University Press, 1998, 323 p.

Britton N. F. Essential mathematical biology . London, Berlin, Heidelberg, Springer Publ., 2003, 335 p.

Aleksandrov A. Yu., Aleksandrova E. B., Platonov A. V. Ultimate boundedness conditions for a hybrid model of population dynamics. Proceedings of 21st Mediterranean conference on Control and Automation , June 25-28, 2013. Platanias-Chania, Crite, Greece, 2013, pp. 622-627.

Khalanai A., Vexler D. Kachestvennaja teorija impul'snyh sistem [ Qualitative theory of impulsive systems ]. Translated from Romanian, ed. by V. P. Rubanik. Moscow, Mir Publ., 1971, 312 p. (In Russian)

Published

2023-03-02

How to Cite

Aleksandrov, A. Y. (2023). Convergence conditions for continuous and discrete models of population dynamics. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 18(4), 443–453. https://doi.org/10.21638/11701/spbu10.2022.401

Issue

Section

Applied Mathematics