Convergence conditions for continuous and discrete models of population dynamics
DOI:
https://doi.org/10.21638/11701/spbu10.2022.401Abstract
Some classes of continuous and discrete generalized Volterra models of population dynamics are considered. It is supposed that there are relationships of the type "symbiosis", "compensationism" or "neutralism" between any two species in a biological community. The objective of the work is to obtain conditions under which the investigated models possess the convergence property. This means that the studying system admits a bounded solution that is globally asimptotically stable. To determine the required conditions, the V. I. Zubov's approach and its discrete-time counterpart are used. Constructions of Lyapunov functions are proposed, and with the aid of these functions, the convergence problem for the considered models is reduced to the problem of the existence of positive solutions for some systems of linear algebraic inequalities. In the case where parameters of models are almost periodic functions, the fulfilment of the derived conditions implies that limiting bounded solutions are almost periodic, as well. An example is presented illustrating the obtained theoretical conclusions.
Keywords:
population dynamics, convergence, almost periodic oscillations, asymptotic stability, Lyapunov functions
Downloads
References
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.