Analysis of consensus time and winning rate in two-layer networks with hypocrisy of different structures

Authors

  • Chi Zhao St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-1166-7578
  • Elena M. Parilina St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation https://orcid.org/0000-0003-3976-7180

DOI:

https://doi.org/10.21638/spbu10.2024.204

Abstract

We have developed a microscopic version of general concealed voter model (GCVM). Original GCVM uses only statistical-physical methods, while our new approach starts with a real network. A microscopic model is suitable for any two-layer network (with internal ans external layers) satisfying the definition given in the paper. We conduct a series of simulations with different network structures and found that a cyclic external structure prolongs consensus time in comparison with a complete external structure. Moreover, a cyclic external structure has a positive impact on a winning rate, and this result is different from the one obtained in the macroscopic version of GCVM. The possible reasons for this difference are discussed in the paper. Additionally, we propose and validate the hypothesis that there exists a strong linear relationship between a consensus time and pairwise average shortest paths $d$ in the network structure. We performed a controlled variable approach to validate the impact of each individual parameter on key performance indicators (KPIs) including a consensus time and winning rate. Furthermore, we assess the influence of parameter combinations on KPIs by analyzing the results using the K-means algorithm. We conclude that certain parameter combinations can have a significant impact on the consensus time.

Keywords:

opinion dynamics, voter model, concealed voter model, general concealed voter model, winning rate

Downloads

Download data is not yet available.
 

References


References

McKeehan L. A contribution to the theory of ferromagnetism. Physical Review, 1925, vol. 26, no. 2, pp. 274–279.

Holley R. A., Liggett T. M. Ergodic theorems for weakly interacting infinite systems and the voter model. The Annals of Probability, 1975, pp. 643–663.

Gastner M. T., Oborny B., Guly'as M. Consensus time in a voter model with concealed and publicly expressed opinions. Journal of Statistical Mechanics: Theory and Experiment, 2018, vol. 2018, no. 6, art. no. 063401.

Gastner M. T., Tak'acs K., Guly'as M., Szvetelszky Z., Oborny B. The impact of hypocrisy on opinion formation: A dynamic model. PloS One, 2019, vol. 14, no. 6, art. no. e0218729.

Zhao C., Parilina E. Opinion dynamics in two-layer networks with hypocrisy. Journal of the Operations Research Society of China, 2024, vol. 12, no. 1, pp. 109–132.

Noorazar H. Recent advances in opinion propagation dynamics: A 2020 survey. The European Physical Journal Plus, 2020, vol. 135, pp. 1–20.

Sznajd-Weron K., Sznajd J. Opinion evolution in closed community. International Journal of Modern Physics C, 2000, vol. 11, no. 06, pp. 1157–1165.

DeGroot M. H. Reaching a consensus. Journal of the American Statistical Association, 1974, vol. 69, no. 345, pp. 118–121.

Friedkin N. E., Johnsen E. C. Social influence and opinions. Journal of Mathematical Sociology, 1990, vol. 15, no. 3/4, pp. 193–206.

Hegselmann R., Krause U. Opinion dynamics and bounded confidence models, analysis and simulation. Journal of Artificial Societies and Social Simulation, 2002, vol. 5, pp. 1–33.

Deffuant G., Neau D., Amblard F., Weisbuch G. Mixing beliefs among interacting agents. Advances in Complex Systems, 2000, vol. 3, no. 01n04, pp. 87–98.

Parsegov S. E., Proskurnikov A. V., Tempo R., Friedkin N. E. Novel multidimensional models of opinion dynamics in social networks. IEEE Transactions on Automatic Control, 2016, vol. 62, no. 5, pp. 2270–2285.

Rogov M., Sedakov A. Coordinated influence on the opinions of social network members. Autom Remote Control, 2020, vol. 81, pp. 528–547.

Mazalov V., Parilina E. The Euler-equation approach in average-oriented opinion dynamics. Mathematics, 2020, vol. 8, art. no. 355.

Kareeva Y., Sedakov A., Zhen M. Influence in social networks with stubborn agents: From competition to bargaining. Applied Mathematics and Computation, 2023, vol. 444, art. no. 127790.

Zha Q., Kou G., Zhang H., Liang H., Chen X., Li C.-C., Dong Y. Opinion dynamics in finance and business: a literature review and research opportunities. Financial Innovation, 2020, vol. 6. pp. 1–22.

Bernardo C., Altafini C., Proskurnikov A., Vasca F. Bounded confidence opinion dynamics: A survey. Automatica, 2024, vol. 159, art. no. 111302.

Dong Y., Zhan M., Kou G., Ding Z., Liang H. A survey on the fusion process in opinion dynamics. Information Fusion, 2018, vol. 43, pp. 57–65.

Virtanen P., Gommers R., Oliphant T. E., Haberland M., Reddy T., Cournapeau D., Burovski E., Peterson P., Weckesser W., Bright J., van der Walt S. J., Brett M., Wilson J., Jarrod Millman K., Mayorov N., Nelson A. R. J., Jones E., Kern R., Larson E., Carey C. J., Polat I., Feng Y., Moore E. W., Vander Plas J., Lexalde D., Perktold J., Cimrman R., Henriksen I., Quintero E. A., Harris C. R., Archibald A. M., Ribeiro A. H., Pedregosa F., van Mulbregt P., SciPy 1.0: Fundamental algorithms for Scientific Computing in Python. Nature Methods, 2020, vol. 17, pp. 261–272.

scipy.stats.pearsonr SciPy v1.12.0 Manual, 2024. Available at: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html (accessed: November 2, 2024).

Student. Probable error of a correlation coefficient. Biometrika, 1908, vol. 6, no. 2/3, pp. 302–310.

Simard R., L’Ecuyer P. Computing the two-sided Kolmogorov — Smirnov distribution. Journal of Statistical Software, 2011, vol. 39, pp. 1–18.

scipy.stats.kstest SciPy v1.12.0 Manual, 2024. Available at: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kstest.html  (accessed: November 2, 2024).

Shapiro S. S., Wilk M. B. An analysis of variance test for normality (complete samples). Biometrika, 1965, vol. 52, no. 3/4, pp. 591–611.

scipy.stats.normaltest SciPy v1.12.0 Manual, 2024. Available at: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.normaltest.html (accessed: November 2, 2024).

Levene H. Robust tests for equality of variances. Contributions to probability and statistics: essays in honor of Harold Hotelling. Stanford, Stanford University Press, 1960, pp. 278–292.

Bartlett M. S. Properties of sufficiency and statistical tests. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1937, vol. 160, no. 901, pp. 268–282.

Fligner M. A., Killeen T. J. Distribution-free two-sample tests for scale. Journal of the American Statistical Association, 1976, vol. 71, no. 353, pp. 210–213.

scipy.stats.levene SciPy v1.12.0 Manual, 2024. Available at: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.levene.html (accessed: November 2, 2024).

Kruskal W. H., Wallis W. A. Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 1952, vol. 47, no. 260, pp. 583–621.

Heiman G. W. Understanding research methods and statistics: An integrated introduction for psychology. Boston, Houghton Mifflin Company, 2001, 779 p.

Alexander R. A., Govern D. M. A new and simpler approximation for ANOVA under variance heterogeneity. Journal of Educational Statistics, 1994, vol. 19, no. 2, pp. 91–101.

scipy.stats.kruskal SciPy v1.12.0 Manual, 2024. Available at: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kruskal.html (accessed: November 2, 2024).

Gronlund A., Larsen K. G., Mathiasen A., Nielsen J. S., Schneider S., Song M. Fast exactlinebreak $k$-means, $k$-medians and Bregman divergence clustering in 1D. arXiv: 1701.07204 [cs], 2018.

Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau A., Brucher M., Perrot M., Duchesnay E. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 2011, vol. 12, pp. 2825–2830.

Rousseeuw P. J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 1987, vol. 20, pp. 53–65.

Downloads

Published

2024-07-08

How to Cite

Zhao, C., & Parilina, E. M. (2024). Analysis of consensus time and winning rate in two-layer networks with hypocrisy of different structures: . Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 20(2), 170–192. https://doi.org/10.21638/spbu10.2024.204

Issue

Section

Applied Mathematics