Cooperative game theory methods for text ranking

Authors

  • Vladimir V. Mazalov Karelian Research Center of the Russian Academy of Sciences, 11, Pushkinskaya ul., Petrozavodsk, 185910, Russian Federation
  • Виталия Андреевна Хитрая Karelian Research Center of the Russian Academy of Sciences, 11, Pushkinskaya ul., Petrozavodsk, 185910, Russian Federation
  • Andrei V. Khitryi Petrozavodsk State University, 33, ul. Lenina, Petrozavodsk, 185910, Russian Federation

DOI:

https://doi.org/10.21638/11701/spbu10.2022.105

Abstract

A method of ranking the corpus of texts of a news portal, based on measures of graph centrality, is proposed. Each text is assigned a vertex of a certain graph, and its structure is determined based on the semantic connectivity of the texts. As a measure of centrality, the Myerson value is used in a cooperative game on a graph, where the number of simple paths in a subgraph of a certain length m is chosen as a characteristic function For different values of m, the ranking based on the Myerson value will be different. For the final ranking, it is proposed to use the ranking procedure based on the tournament matrix. The operation of the ranking algorithm is illustrated by numerical examples related to a specific news portal.

Keywords:

text corpus of news, graph, centrality measure, Myerson value, tournament matrix, ranking procedure

Downloads

Download data is not yet available.
 

References

Литература

Silva A., Lozkins A., Bertoldi L. R., Rigo S., Bure V. M. Semantic textual similarity on Brazilian Portuguese: An approach based on language-mixture models // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2019. Т. 15. Вып. 2. С. 235–244. https://doi.org/10.21638/11701/spbu10.2019.207

Jones K. S. A statistical interpretation of term specificity and its application in retrieval // J. Documentation. 2004. Vol. 60. N 5. P. 493–502. https://doi.org/10.1108/00220410410560573

Page L., Brin S., Motwani R., Winograd T. The pagerank citation ranking: Bringing order to the Web // Proceedings of the 7th International World Wide Web Conference. Brisbane, Australia. 1998. P. 161–172. URL: http://citeseer.nj.nec.com/page98pagerank.html (дата обращения: 15 июля 2021 г.).

Freeman L. C. A set of measures of centrality based on betweenness // Sociometry. 1977. Vol. 40. N 1. P. 35–41. http://dx.doi.org/10.2307/3033543

Brandes U. Centrality measures based on current flow // STACS 2005. 22nd Annual Symposium on Theoretical Aspects of Computer Science. Stuttgart, Germany. February 24–26, 2005. Proceedings. Eds. by V. Diekert, B. Durand. Vol. 3404 of Lecture Notes in Computer Science. Stuttgart: Springer, 2005. P. 533–544. https://doi.org/10.1007/978-3-540-31856-9_44

Avrachenkov K., Litvak N., Medyanikov V., Sokol M. Alpha current flow betweenness centrality // Algorithms and Models for the Web Graph. 10th International Workshop (WAW 2013). Cambridge, MA, USA. December 14–15, 2013. Proceedings. Eds. by A. Bonato, M. Mitzenmacher, P. Pralat. Vol. 8305 of Lecture Notes in Computer Science. Cambridge: Springer, 2013. P. 106–117. https://doi.org/10.1007/978-3-319-03536-9_9

Avrachenkov K. E., Mazalov V. V., Tsynguev B. T. Beta current flow centrality for weighted networks // Computational Social Networks. 4th International Conference (CSoNet 2015). Beijing, China. August 4–6, 2015. Proceedings. Lecture Notes in Computer Science. N 9197. 2015. P. 216–227. https://doi.org/10.1007/978-3-319-21786-4_19

Newman M. E. J. A measure of betweenness centrality based on random walks // Social Networks. 2005. Vol. 27. P. 39–54. http://dx.doi.org/10.1016/j.socnet.2004.11.009

Jackson M. O. Social and economic networks. Princeton, USA: Princeton University Press, 2008. 504 p. https://doi.org/10.1515/9781400833993

G’omez D., Gonz’alez-Arang”uena E., Manuel C. et al. Centrality and power in social networks: a game theoretic approach // Math. Soc. Sci. 2003. Vol. 46, N 1. P. 27–54. https://doi.org/10.1016/S0165-4896(03)00028-3

Skibski O., Tomasz P., Talal R. Axiomatic characterization of game theoretic centrality // J. Artif. Intell. Res. 2018. Vol. 62. P. 33–68. https://doi.org/10.1613/jair.1.11202

Mazalov V. V., Trukhina L. I. Generating functions and the Myerson vector in communication networks // Diskr. Mat. 2014. Vol. 26. N 3. P. 65–75. https://doi.org/10.1515/dma-2014-0026

Avrachenkov K., Kondratev A. Yu., Mazalov V. V., Rubanov D. G. Network partitioning as cooperative games // Computational social networks. 2018. Vol. 5. N 11. P. 1–28.

Мазалов В. В., Хитрая В. А. Модифицированное значение Майерсона для определения центральности вершин графа // Математическая теория игр и еe приложения. 2019. Vol. 11. № 2. С. 19–39.

Мазалов В. В., Никитина Н. Н. Метод максимального правдоподобия для выделения сообществ в коммуникационных сетях // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2018. Т. 14. Вып. 3. С. 200–214. https://doi.org/10.21638/11701/spbu10.2018.302

Korobov M. Morphological analyzer and generator for russian and ukrainian languages // Analysis of Images, Social Networks and Texts / Eds. by M. Yu. Khachay, N. Konstantinova, A. Panchenko et al. Cham: Springer International Publ., 2015. Vol. 542 of Communications in Computer and Information Science. P. 320–332. http://dx.doi.org/10.1007/978-3-319-26123-231

Lovins J. B. Development of a stemming algorithm // Mech. Transl. Comput. Linguistics. 1968. Vol. 11. N 12. P. 22–31. URL: http://www.mtarchive.info/MT1968-Lovins.pdf (дата обращения: 15 июля 2021 г.).

Van Rijsbergen C. J., Robertson S. E., Porter M. F. New models in probabilistic information retrieval // Computer Laboratory. Cambridge, USA: Cambridge University Press, 1980. 613 p.

Harris Z. Distributional structure // Word. 1954. Vol. 10, N 2–3. P. 146–162. URL: https://link.springer.com/chapter/10.1007/978-94-009-8467-71 (дата обращения: 15 июля 2021 г.).

Manning C. D., Raghavan P., Sch”utze H. Introduction to information retrieval. Cambridge, USA: Cambridge University Press, 2008. 535 p.

Kondratev A. A., Mazalov V. V. Ranking procedure with the shapley value // Intelligent Information and Database Systems. 9th Asian Conference (ACIIDS 2017). Kanazawa, Japan. April 3–5,linebreak 2017. Proceedings. P. II / Eds. by N. T. Nguyen, S. Tojo, L. M. Nguyen, B. Trawinski. 2017. Vol. 10192 of Lecture Notes in Computer Science. P. 691–700. https://doi.org/10.1007/978-3-319-54430-4_66


References

Silva A., Lozkins A., Bertoldi L. R., Rigo S., Bure V. M. Semantic textual similarity on Brazilian Portuguese: An approach based on language-mixture models. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2019, vol. 15, iss. 2, pp. 235–244. https://doi.org/10.21638/11701/spbu10.2019.207 (In Russian)

Jones K. S. A statistical interpretation of term specificity and its application in retrieval. J. Documentation, 2004, vol. 60, no. 5, pp. 493–502. https://doi.org/10.1108/00220410410560573

Page L., Brin S., Motwani R., Winograd T. The pagerank citation ranking: Bringing order to the Web. Proceedings of the 7th International World Wide Web Conference. Brisbane, Australia, 1998, pp. 161–172. Available at: citeseer.nj.nec.com/page98pagerank.html (accessed: July 15, 2021).

Freeman L. C. A set of measures of centrality based on betweenness. Sociometry, 1977, vol. 40, no. 1, pp. 35–41. http://dx.doi.org/10.2307/3033543

Brandes U. Centrality measures based on current flow. STACS 2005. 22nd Annual Symposium on Theoretical Aspects of Computer Science. Stuttgart, Germany, February 24–26, 2005. Proceedings, Eds. by V. Diekert, B. Durand, vol. 3404 of Lecture Notes in Computer Science. Stuttgart, Springer Publ., 2005, pp. 533–544. https://doi.org/10.1007/978-3-540-31856-9_44

Avrachenkov K., Litvak N., Medyanikov V., Sokol M. Alpha current flow betweenness centrality. Algorithms and Models for the Web Graph. 10th International Workshop (WAW 2013). Cambridge, MA, USA, December 14–15, 2013. Proceedings. Eds. by A. Bonato, M. Mitzenmacher, P. Pralat, vol. 8305 of Lecture Notes in Computer Science. Cambridge, Springer Publ., 2013, pp. 106–117. https://doi.org/10.1007/978-3-319-03536-9_9

Avrachenkov K. E., Mazalov V. V., Tsynguev B. T. Beta current flow centrality for weighted networks. Computational Social Networks. 4th International Conference (CSoNet 2015). Beijing, China, August 4–6, 2015. Proceedings, Lecture Notes in Computer Science, no. 9197, 2015, pp. 216–227. https://doi.org/10.1007/978-3-319-21786-4_19

Newman M. E. J. A measure of betweenness centrality based on random walks. Social Networks, 2005, vol. 27, pp. 39–54. http://dx.doi.org/10.1016/j.socnet.2004.11.009

Jackson M. O. Social and economic networks. Princeton, USA, Princeton University Press, 2008, 504 p. https://doi.org/10.1515/9781400833993

G’omez D., Gonz’alez-Arang”uena E., Manuel C. et al. Centrality and power in social networks: a game theoretic approach. Math. Soc. Sci., 2003, vol. 46, no. 1, pp. 27–54. https://doi.org/10.1016/S0165-4896(03)00028-3

Skibski O., Tomasz P., Talal R. Axiomatic characterization of game theoretic centrality. J. Artif. Intell. Res., 2018, vol. 62, p. 33–68. https://doi.org/10.1613/jair.1.11202

Mazalov V. V., Trukhina L. I. Generating functions and the Myerson vector in communication networks. Diskr. Mat., 2014, vol. 26, no. 3, pp. 65–75. https://doi.org/10.1515/dma-2014-0026

Avrachenkov K., Kondratev A. Yu., Mazalov V. V., Rubanov D. G. Network partitioning as cooperative games. Computational social networks, 2018, vol. 5, no. 11, pp. 1–28.

Mazalov V. V., Khitraya V. A. Modificirovannoe znachenie Maiersona dlya opredeleniya centralnosti vershin grafa [Modified Mayerson value for determining the centrality of graph vertices]. Matematicheskaia teoriia igr i ee prilozheniia [Mathematical theory players and its supplements], 2019, vol. 11, no. 2, pp. 19–39. (In Russian)

Mazalov V. V., Nikitina N. N. Metod maksimalnogo pravdopodobia dlya vydelenya soobshestv v commukacionnih setyah [Maximum likelihood method for detecting communities in communication networks]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2018, vol. 14, no. 3, pp. 200–214. https://doi.org/10.21638/11701/spbu10.2018.302 (In Russian)

Korobov M. Morphological analyzer and generator for Russian and Ukrainian languages. Analysis of Images, Social Networks and Texts. Eds. by M. Yu. Khachay, N. Konstantinova, A. Panchenko et al. Cham, Springer International Publ., 2015, vol. 542 of Communications in Computer and Information Science, pp. 320–332. http://dx.doi.org/10.1007/978-3-319-26123-231

Lovins J. B. Development of a stemming algorithm. Mech. Transl. Comput. Linguistics, 1968, vol. 11, no. 12, pp. 22–31. Available at: http://www.mtarchive.info/MT1968-Lovins.pdf (accessed: July 15, 2021).

Van Rijsbergen C. J., Robertson S. E., Porter M. F. New models in probabilistic information retrieval. Computer Laboratory. Cambridge, USA, Cambridge University Press, 1980, 613 p.

Harris Z. Distributional structure. Word, 1954, vol. 10, no. 2-3, pp. 146–162. Available at: https://link.springer.com/chapter/10.1007/978-94-009-8467-71 (accessed: July 15, 2021).

Manning C. D., Raghavan P., Sch”utze H. Introduction to information retrieval. Cambridge, USA, Cambridge University Press, 2008, 535 p.

Kondratev A. A., Mazalov V. V. Ranking procedure with the shapley value. Intelligent Information and Database Systems. 9th Asian Conference (ACIIDS 2017). Kanazawa, Japan, April 3–5, 2017. Proceedings, P. II / Eds. by N. T. Nguyen, S. Tojo, L. M. Nguyen, B. Trawinski, 2017, vol. 10192 of Lecture Notes in Computer Science, pp. 691–700. https://doi.org/10.1007/978-3-319-54430-4_66

Published

2022-06-02

How to Cite

Mazalov, V. V., Хитрая, В. А., & Khitryi, A. V. (2022). Cooperative game theory methods for text ranking. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 18(1), 63–78. https://doi.org/10.21638/11701/spbu10.2022.105

Issue

Section

Applied Mathematics