''``Size effect'' when bending rectangles made of foam materials
DOI:
https://doi.org/10.21638/spbu10.2025.102Abstract
By the method of initial functions (MIF) in a rectangular Cartesian coordinate system Oxy. The behavior of products made of foamed materials is investigated on the basis of the moment theory of elasticity. The initial functions in the MIF solution are represented by trigonometric series, which made it possible to solve the boundary problem of deforming a micropolar rectangle (h × l) with arbitrary boundary conditions on the sides x = 0, h and free support (σy = 0, u = 0, µy = 0) on the sides y = 0, l. The results of computational experiments showing the effect of the ratio of rectangle sizes and its height for the manifestation of the “size effect” for syntactic foam and polyurethane foam are presented. The minimal linear dimensions of the rectangle are determined, with a decrease in which it begins to manifest itself “size effect”.
Keywords:
moment theory of elasticity, plane strain deformation, method of initial functions, exact solution, foamed materials
Downloads
References
Rueger Z., Lakes R. S. Experimental Cosserat elasticity in open-cell polymer foam // Philosophical Magazine. 2016. Vol. 96. N 2. P. 93–111. https://doi.org/10.1080/14786435.2015.1125541
Hassanpour S., Heppler G. R. Micropolar elasticity theory: A survey of linear isotropic equations, representative notations, and experimental investigation // Mathematics and Mechanics of Solids. 2017. Vol. 22. N 2. P. 224–242. https://doi.org/10.1177/1081286515581183
Skrzat A., Eremeyev V. A. On the effective properties of foams in the framework of the couple stress theory // Continuum Mechanics and Thermodynamics. 2020. Vol. 32. P. 1779–1801. https://doi.org/10.1007/s00161-020-00880-6
Cosserat E., Cosserat F. Théorie des corps déformables. Paris: Hermann et Fils, 1909. 280 p.
Mindlin R. D., Tiersten H. F. Effects of couple-stresses in linear elasticity // Archive for Rational Mechanics and Analysis. 1962. Vol. 11. P. 415–448.
Toupin R. A. Elastic materials with couple-stresses // Archive for Rational Mechanics and Analysis. 1962. Vol. 11. P. 385–414.
Аэро Э. Л., Кувшинский Е. В. Основные уравнения теории упругости сред с вращательным взаимодействием частиц // Физика твeрдого тела. 1960. Т. 2. № 7. С. 1399–2409.
Eringen A. C., Suhubil E. S. Nonlinear theory of simple microelastic solids // International Journal of Engineering Science. 1964. Vol. 2. P. 189–203.
Eringen A. C. Linear theory of micropolar elasticity // Journal of Mathematics and Mechanics. 1966. Vol. 15. N 6. P. 909–923.
Grigor'ev Yu. M., Gavrilieva A. A. An equilibrium of a micropolar elastic rectangle with mixed boundary conditions // Continuum Mechanics and Thermodynamics. 2019. Vol. 31. P. 1699–1718. https://doi.org/10.1007/s00161-019-00823-w
Matrosov A. V. An exact analytical solution for a free-supported micropolar rectangle by the method of initial functions // Zeitschrift für Angewandte Mathematik und Physik. 2022. Vol. 73. https://doi.org/10.1007/s00033-022-01714-y
Nowacki W. Theory of asymmetric elasticity. Oxford: Pergamon Press, 1986. 383 p.
Агарев В. А. Метод начальных функций для двумерных граничных задач теории упругости. Киев: Издательство Академии наук УССР, 1963. 204 с.
Lur'e A. I. Three-dimensional problems of theory of elasticity. New York: Interscience Publ., 1964. 493 p.
Власов В. З. Метод начальных функций в задачах теории упругости // Известия Академии наук СССР. Отд. техн. наук. 1955. № 7. С. 49–69.
Матросов А. В. Численно-аналитическое решение граничной задачи деформирования линейно-упругого анизотропного прямоугольника // Вестник Санкт-Петербургского университета. Cер. 10. Прикладная математика. Информатика. Процессы управления. 2007. Вып. 2. С. 55–65.
Lakes R. S. Size effects and micromechanics of a porous solid // Journal of Materials Science. 1983. Vol. 8. P. 2572–2580.
Lakes R. S. Experimental microelasticity of two porous solids // International Journal of Solids and Structures. 1986. Vol. 22. N 1. P. 55–63.
References
Rueger Z., Lakes R. S. Experimental Cosserat elasticity in open-cell polymer foam. Philosophical Magazine, 2016, vol. 96, no. 2, pp. 93–111. https://doi.org/10.1080/14786435.2015.1125541
Hassanpour S., Heppler G. R. Micropolar elasticity theory: A survey of linear isotropic equations, representative notations, and experimental investigations. Mathematics and Mechanics of Solids, 2017, vol. 22, no. 2, pp. 224–242. https://doi.org/10.1177/1081286515581183
Skrzat A., Eremeyev V. A. On the effective properties of foams in the framework of the couple stress theory. Continuum Mechanics and Thermodynamics, 2020, vol. 32, pp. 1779–1801. https://doi.org/10.1007/s00161-020-00880-6
Cosserat E., Cosserat F. Théorie des corps déformables. Paris, Publ. of Hermann et Fils, 1909, 280 p.
Mindlin R. D., Tiersten H. F. Effects of couple-stresses in linear elasticity. Archive for Rational Mechanics and Analysis, 1962, vol. 11, pp. 415–448.
Toupin R. A. Elastic materials with couple-stresses. Archive for Rational Mechanics and Analysis, 1962, vol. 11, pp. 385–414.
Aero E. L., Kuvshinskii E. V. Osnovnye uravneniia teorii uprugosti sred s vrashchatel'nym vzaimodeistviem chastits [Fundamental equations of the theory of elastic media with rotationally interacting particles]. Fizika tverdogo tela [Sov. Phys. Solid State], 1960, vol. 2, no. 7, pp. 1399–1409. (In Russian)
Eringen A. C., Suhubil E. S. Nonlinear theory of simple microelastic solids. International Journal of Engineering Science, 1964, vol. 2, pp. 189–203.
Eringen A. C. Linear theory of micropolar elasticity. Journal of Mathematics and Mechanics, 1966, vol. 15, no. 6, pp. 909–923.
Grigor'ev Yu. M., Gavrilieva A. A. An equilibrium of a micropolar elastic rectangle with mixed boundary conditions. Continuum Mechanics and Thermodynamics, 2019, vol. 31, pp. 1699–1718. https://doi.org/10.1007/s00161-019-00823-w
Matrosov A. V. An exact analytical solution for a free-supported micropolar rectangle by the method of initial functions. Zeitschrift für Angewandte Mathematik und Physik, 2022, vol. 73. https://doi.org/10.1007/s00033-022-01714-y
Nowacki W. Theory of asymmetric elasticity. Oxford, Pergamon Press, 1986, 383 p.
textAgaryov V. A. Metod nachal'nykh funktsii dlia dvumernykh granichnykh zadach teorii uprugosti [Method of initial functions for two-dimensional boundary value problems of elasticity theory]. Kiev, textPubl. House of Academy of Sciences UkrSSR, 1963, 204 p. (In Russian)
Lur'e A. I. Three-dimensional problems of theory of elasticity. New York, Interscience Publ., 1964, 493 p.
Vlasov V. Z. Metod nachal'nykh funktsii v zadachakh teorii uprugosti [Method of initial functions in problems of the theory of elasticity]. Izvestiia Akademii nauk SSSR. Otd. tekhn. nauk [Proceedings of Academy of Sciences. Department of Technical of Sciences], 1955, no. 7, pp. 49–69. (In Russian)
Matrosov A. V. Chislenno-analiticheskoe reshenie granichnoi zadachi deformirovaniia lineinouprugogo anizotropnogo priamougol’nika [Numerical-analytical solution for a boundary problem of deformation of linearly-elastic anisotropic rectangle]. Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2007, iss. 2, pp. 55–65. (In Russian)
Lakes R. S. Size effects and micromechanics of a porous solid. Journal of Materials Science, 1983, vol. 8, pp. 2572–2580.
Lakes R. S. Experimental microelasticity of two porous solids. International Journal of Solids and Structures, 1986, vol. 22, no. 1, pp. 55–63.
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.