Triaxial electrodynamic stabilization of a satellite via PID controller

Authors

  • Alexander Yu. Aleksandrov St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation https://orcid.org/0000-0001-7186-7996
  • Sergey B. Ruzin St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/spbu10.2024.209

Abstract

A satellite moving on a circular equatorial orbit is considered. The satellite is equipped with a controlled magnetic moment and a controlled electrostatic charge. The problem of triaxial stabilization in the orbital frame is studied. The electrodynamic control system is proposed. In addition, to improve characteristics of transient processes, PID controller of a special form is used. With the aid of the Lyapunov direct method, asymptotic stability conditions of the program mode are obtained. The results of computer simulation are provided demonstrating the efficiency of the developed approach.

Keywords:

satellite, electrodynamic control, triaxial stabilization, Lyapunov — Krasovskii functional, PID controller

Downloads

Download data is not yet available.
 

References


References

Schaub H., Junkins J. L. Analytical mechanics of space systems. Reston, Virginia, American Institute of Aeronautics & Astronautics, 2009, 744 p.

Hughes P. C. Spacecraft attitude dynamics. New York, Wiley, 1986, 584 p.

Kane T. R., Likins P. W., Levinson D. A. Spacecraft dynamics. New York, McGraw-Hill Book Co., 1983, 454 p.

Zhou K., Huang H., Wang X., Sun L., Zhong R. Magnetic attitude control for Earth-pointing satellites in the presence of gravity gradient. Aerospace Science and Technology, 2017, vol. 60, pp. 115–123. https://doi.org/10.1016/j.ast.2016.11.003

Silani E., Lovera M. Magnetic spacecraft attitude control: A survey and some new results. Control Engeneering Practic, 2005, vol. 13, no. 3, pp. 357–371. https://doi.org/10.1016/j.conengprac.2003.12.017

Ignatov A. I., Sazonov V. V. Stabilization of the solar orientation mode of an artificial earth satellite by an electromagnetic control system. Cosmic Research, 2018, vol. 56, no. 5, pp. 388–399. https://doi.org/10.1134/S0010952518050015

Guelman M., Waller R., Shiryaev A., Psiaki M. Design and testing of magnetic controllers for satellite stabilization. Acta Astronautica, 2005, vol. 56, pp. 231–239. https://doi.org/10.1016/j.actaastro.2004.09.028.

Xia X., Guo C., Xie G. Investigation on magnetic-based attitude de-tumbling algorithm. Aerospace Science and Technology, 2019, vol. 84, pp. 1106–1115. https://doi.org/10.1016/j.ast.2018.11.035

Giri D. K., Sinha M., Kumar K. D. Fault-tolerant attitude control of magneto-Coulombic satellites. Acta Astronautica, 2015, vol. 116, pp. 254–270. https://doi.org/10.1016/j.actaastro.2015.06.020

Kovalenko A. P. Magnitnye sistemy upravleniya kosmicheskimi letatel'nymi apparatami [Magnetic control systems for spacecraft]. Moscow, Mashinostroenie Publ., 1975, 248 p. (In Russian)

Antipov K. A., Tikhonov A. A. Parametric control in the problem of spacecraft stabilization in the geomagnetic field. Automation Remote Control, 2007, vol. 68, no. 8, pp. 1333–1345. https://doi.org/10.1134/S000511790708005X

Aleksandrov A. Yu., Tikhonov A. A. Electrodynamic stabilization of earth-orbiting satellites in equatorial orbits. Cosmic Research, 2012, vol. 50, no. 4, pp. 313–318.

Zhao C., Guo L. PID controller design for second order nonlinear uncertain systems. Science China Information Science, 2017, vol. 60, no. 2, art. no. 022201.

Tkhai V. N. Stabilization of oscillations of a controlled reversible mechanical system. Automation Remote Control, 2022, vol. 83, no. 9, pp. 1404–1416. https://doi.org/10.1134/S0005117922090053

Anan’evskii I. M., Kolmanovskii V. B. On stabilization of some control systems with an after-effect. Automation Remote Control, 1989, no. 9, pp. 1174–1181.

Formal’sky A. M. On a modification of the PID controller. Dynamics and Control, 1997, vol. 7, no. 3, pp. 269–277. https://doi.org/10.1023/A:1008202618580

Zhao C., Guo L. Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica, 2022, vol. 142, art. no. 110360.

Dong W., Zhao Y., Cong Y. Reduced-order observer-based controller design for quasi-one-sided Lipschitz nonlinear systems with time-delay. International Journal Robust and Nonlinear Control, 2021, vol. 31, no. 3, pp. 817–831. https://doi.org/10.1002/rnc.5312

Zhabko A. P., Provotorov V. V., Sergeev S. M. Optimal control of the Navier — Stokes system with a space variable in a network-like domain. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2023, vol. 19, iss. 4, pp. 549–562. https://doi.org/10.21638/11701/spbu10.2023.411

Subbarao K. Nonlinear PID-like controllers for rigid-body attitude stabilization. The Journal of the Austronautical Sciences, 2004, vol. 52, no. 1–2, pp. 61–74.

Moradi M. Self-tuning PID controller to three-axis stabilization of a satellite with unknown parameters. International Journal Non-Linear Mechanics, 2013, vol. 49, pp. 50–56. https://doi.org/10.1016/j.ijnonlinmec.2012.09.002

Li Y., Zhaowei S., Dong Y. Time efficient robust PID plus controller for satellite attitude stabilization control considering angular velocity and control torque constraint. Journal Aerospace Engeneering, 2017, vol. 30, no. 5, art. no. 04017030. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000743

Alexandrov A. Yu., Tikhonov A. A. Electrodynamic control with distributed delay for AES stabilization in an equatorial orbit. Cosmic Research, 2022, vol. 60, no. 5, pp. 366–374. https://doi.org/10.1134/S0010952522040013

Fridman E. Introduction to time-delay systems: Аnalysis and control. Basel, Birkh"auser, 2014, 362 p.

Aleksandrov A. Yu., Kosov A. A., Chen Y. Stability and stabilization of mechanical systems with switching. Automation Remote Control, 2011, vol. 72, no. 6, pp. 1143–1154.

Efimov D., Aleksandrov A. Analysis of robustness of homogeneous systems with time delays using Lyapunov — Krasovskii functionals. International Journal Robust Nonlinear Control, 2021, vol. 31, pp. 3730–3746. https://doi.org/10.1002/rnc.5115

Aleksandrov A., Efimov D., Fridman E. Stability of homogeneous systems with distributed delay and time-varying perturbations. Automatica, 2023, vol. 153, art. no. 111058. https://doi.org/10.1016/j.automatica.2023.111058

Kalinina E. A., Kamachkin A. M., Stepenko N. A., Tamasyan G. Sh. K voprosu o konstruktivnom kriterii upravlyaemosti. Ch. I. Ciklicheskie invariantnye podprostranstva [On the question of a constructive controllability criterion. Pt I. Cyclic invariant subspaces]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2023, vol. 19, iss. 2, pp. 283–299. https://doi.org/10.21638/11701/spbu10.2023.213 (In Russian)

Aleksandrov A. Y., Aleksandrova E. B., Tikhonov A. A. Stabilization of a programmed rotation mode for a satellite with electrodynamic attitude control system. Advances in Space Research, 2018, vol. 62, no. 1, pp. 142–151.

Downloads

Published

2024-07-08

How to Cite

Aleksandrov, A. Y., & Ruzin, S. B. (2024). Triaxial electrodynamic stabilization of a satellite via PID controller: . Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 20(2), 244–254. https://doi.org/10.21638/spbu10.2024.209

Issue

Section

Control Processes