Application of the implicit Euler method for the discretization of some classes of nonlinear systems

Authors

  • Alexander Yu. Aleksandrov St. Petersburg State University, 199034, St. Petersburg, Russian Federation

DOI:

https://doi.org/10.21638/11701/spbu10.2023.301

Abstract

The problem of stability preservation under discretization of some classes of nonlinear differential equations systems is studied. Persidskii systems, Lurie systems of indirect control, and systems whose right-hand sides have a canonical structure are considered. It is assumed that the zero solutions of these systems are globally asymptotically stable. Conditions are determined that guarantee the asymptotic stability of the zero solutions for the corresponding difference systems. Previously, such conditions were established for the case where discretization was carried out using the explicit Euler method. In this paper, difference schemes are constructed on the basis of the implicit Euler method. For the obtained discrete systems, theorems on local and global asymptotic stability are proved, estimates of the time of transient processes are derived. For systems with a canonical structure of right-hand sides, based on the approach of V. I. Zubov, a modified implicit computational scheme is proposed that ensures the matching of the convergence rate of solutions to the origin for the differential and corresponding difference systems. It is shown that implicit computational schemes can guarantee the preservation of asymptotic stability under less stringent constraints on the discretization step and right-hand sides of the systems under consideration compared to the constraints obtained using the explicit method. An example is presented illustrating the obtained theoretical conclusions.

Keywords:

difference systems, discretization, implicit Euler method, asymptotic stability, Lyapunov functions, conservative numerical methods

Downloads

Download data is not yet available.
 

References

Литература

Зубов В. И. Проблема устойчивости процессов управления. Л.: Судпромгиз, 1980. 253 c.

Халанай А., Векслер Д. Качественная теория импульсных систем / пер. с рум.; под ред. В. П. Рубаника. М.: Мир, 1971. 312 c.

Мартынюк Д. И. Лекции по качественной теории разностных уравнений. Киев: Наукова думка, 1972. 246 c.

Igaadi A., Mghari H. E., Amraoui R. E. Numerical investigation into the effects of orientation on subcooled flow boiling characteristics // Journal of Applied and Computational Mechanics. 2023. Vol. 9. N 2. P. 464–474.

Provotorov V. V., Sergeev S. M., Hoang V. N. Point control of a differential-difference system with distributed parameters on the graph // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2021. Т. 17. Вып. 3. C. 277–286. https://doi.org/10.21638/11701/spbu10.2021.305

Zhabko A. P., Provotorov V. V., Ryazhskikh V. I., Shindyapin A. I. Optimal control of a differential-difference parabolic systems with distributed parameters on the graph // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2021. Т. 17. Вып. 4. C. 433–448. https://doi.org/10.21638/11701/spbu10.2021.411

Butcher J. C. Numerical methods for ordinary differential equations. New York: John Wiley & Sons, 2003. 463 p.

Dekker K., Verwer J. G. Stability of Runge–Kutta methods for stiff nonlinear differential equations. Amsterdam: North-Holland, 1984. 307 p.

Олемской И. В., Фирюлина О. С., Тумка О. А. Семейства вложенных методов шестого порядка // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2022. Т. 18. Вып. 2. C. 285–296. https://doi.org/10.21638/11701/spbu10.2022.209

Зубов В. И. Консервативные численные методы интегрирования дифференциальных уравнений в нелинейной механике // Докл. РАН. 1997. Т. 354. № 4. C. 446–448.

Gonzalez C., Ostermann A., Palencia C., Thalhammer M. Backward Euler discretization of fully nonlinear parabolic problems // Mathematics of Computation. 2002. Vol. 71. N 237. P. 125–145.

Merlet B., Pierre M. Convergence to equilibrium for the backward Euler scheme and applications // Communications on Pure and Applied Analysis. 2010. Vol. 9. N 3. P. 685–702.

Acary V., Brogliato B. Implicit Euler numerical scheme and chattering-free implementation of sliding mode systems // Systems and Control Letters. 2010. Vol. 59. P. 284–293.

Efimov D., Polyakov A., Levant A., Perruquetti W. Realization and discretization of asymptotically stable homogeneous systems // IEEE Transactions on Automatic Control. 2017. Vol. 62. N 11. P. 5962–5969.

Brogliato B., Polyakov A., Efimov D. The implicit discretization of the supertwisting sliding-mode control algorithm // IEEE Transactions on Automatic Control. 2020. Vol. 65. N 8. P. 3707–3713.

Efimov D., Polyakov A., Aleksandrov A. Discretization of homogeneous systems using Euler method with a state-dependent step // Automatica. 2019. Vol. 109. Art. N 108546.

Brogliato B., Polyakov A. Digital implementation of sliding-mode control via the implicit method: A tutorial // International Journal of Robust and Nonlinear Control. 2021. Vol. 31. N 9. P. 3528–3586.

Александров А. Ю., Жабко А. П. Об устойчивости решений одного класса нелинейных разностных систем // Сиб. матем. журн. 2003. Т. 44. № 6. C. 1217–1225.

Александров А. Ю., Жабко А. П. О сохранении устойчивости при дискретизации систем обыкновенных дифференциальных уравнений // Сибирск. матем. журн. 2010. Т. 51. № 3. C. 481–497.

Persidskii S. K. Problem of absolute stability // Automation and Remote Control. 1969. N 12. P. 1889–1895.

Kaszkurewicz E., Bhaya A. Matrix diagonal stability in systems and computation. Boston, Basel, Berlin: Birkhauser Press, 1999. 267 p.

Hofbauer J., Sigmund K. Evolutionary games and population dynamics. Cambridge: Cambridge University Press, 1998. 323 p.

Erickson K., Michel A. Stability analysis of fixed-point digital filters using computer generated Lyapunov functions. Pt I: Direct form and coupled form filters // IEEE Transactions on Circuits and Systems. 1985. Vol. 32. P. 113–132.

Hopfield J., Tank D. Computing with neural circuits: a model // Science. 1986. Vol. 233. P. 625–633.

Sandberg I. W., Willson A. N. Some theorems on properties of DC equations of nonlinear networks // The Bell System Technical Journal. 1969. Vol. 48. P. 1–34.

Александров А. Ю. Об устойчивости по нелинейному приближению одного класса неавтономных систем // Дифференциальные уравнения. 2000. Т. 36. № 7. C. 993–995.

Лурье А. И. Некоторые нелинейные задачи теории автоматического регулирования. М.: Гостехиздат, 1951. 216 c.

Rouche N., Habets P., Laloy M. Stability theory by Liapunov's direct method. New York: Springer, 1977. 396 p.

Liao X., Yu P. Absolute stability of nonlinear control systems. New York: Springer, 2008. 384 p.

Aleksandrov A., Aleksandrova E., Zhabko A. Asymptotic stability conditions and estimates of solutions for nonlinear multiconnected time-delay systems // Circuits, Systems, and Signal Processing. 2016. Vol. 35. P. 3531–3554.

Aleksandrov A., Aleksandrova E. Delay-independent stability conditions for a class of nonlinear difference systems // Journal of the Franklin Institute. 2018. Vol. 355. P. 3367–3380.

Александров А. Ю. Об асимптотической устойчивости решений нелинейных неавтономных систем // Изв. РАН. Теория и системы управления. 1999. № 2. С. 5–9.

Меркин Д. Р. Введение в теорию устойчивости. М.: Наука, 1976. 320 с.


References

Zubov V. I. Problema ustoichivosti protsessov upravleniia [The stability problem of control processes]. Leningrad, Sudpromgiz Publ., 1980, 253 p. (In Russian)

Khalanai A., Vexler D. Kachestvennaia teoriia impul'snykh sistem [Qualitative theory of impulsive systems]. Transl. from Romanian, ed. by V. P. Rubanik. Moscow, Mir Publ., 1971, 312 p. (In Russian)

Martynyuk D. I. Lektsii po kachestvennoi teorii raznostnykh uravnenii [Lectures on the qualitative theory of difference equations]. Kiev, Naukova Dumka Publ., 1972, 246 p. (In Russian)

Igaadi A., Mghari H. E., Amraoui R. E. Numerical investigation into the effects of orientation on subcooled flow boiling characteristics. Journal of Applied and Computational Mechanics, 2023, vol. 9, no. 2, pp. 464–474.

Provotorov V. V., Sergeev S. M., Hoang V. N. Point control of a differential-difference system with distributed parameters on the graph. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2021, vol. 17, iss. 3, pp. 277–286. https://doi.org/10.21638/11701/spbu10.2021.305

Zhabko A. P., Provotorov V. V., Ryazhskikh V. I., Shindyapin A. I. Optimal control of a differential-difference parabolic systems with distributed parameters on the graph. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2021, vol. 17, iss. 4, pp. 433–448. https://doi.org/10.21638/11701/spbu10.2021.411

Butcher J. C. Numerical methods for ordinary differential equations. New York, John Wiley & Sons Publ., 2003, 463 p.

Dekker K., Verwer J. G. Stability of Runge–Kutta methods for stiff nonlinear differential equations. Amsterdam, North-Holland Publ., 1984, 307 p.

Olemskoy I. V., Firyulina O. S., Tumka O. A. Semeistva vlozhennykh metodov shestogo poriadka [Families of embedded methods of order six]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2022, vol. 18, iss. 2, pp. 285–296. https://doi.org/10.21638/11701/spbu10.2022.209 (In Russian)

Zubov V. I. Konservativnye chislennye metody integrirovaniia differentsial'nykh uravnenii v nelineinoi mekhanike [Conservative numerical methods for integrating differential equations in nonlinear mechanics]. Dokl. RAN, 1997, vol. 354, no. 4, pp. 446–448. (In Russian)

Gonzalez C., Ostermann A., Palencia C., Thalhammer M. Backward Euler discretization of fully nonlinear parabolic problems. Mathematics of Computation, 2002, vol. 71, no. 237, pp. 125–145.

Merlet B., Pierre M. Convergence to equilibrium for the backward Euler scheme and applications. Communications on Pure and Applied Analysis, 2010, vol. 9, no. 3, pp. 685–702.

Acary V., Brogliato B. Implicit Euler numerical scheme and chattering-free implementation of sliding mode systems. Systems and Control Letters, 2010, vol. 59, pp. 284–293.

Efimov D., Polyakov A., Levant A., Perruquetti W. Realization and discretization of asymptotically stable homogeneous systems. IEEE Transactions on Automatic Control, 2017, vol. 62, no. 11, pp. 5962–5969.

Brogliato B., Polyakov A., Efimov D. The implicit discretization of the supertwisting sliding-mode control algorithm. IEEE Transactions on Automatic Control, 2020, vol. 65. no. 8, pp. 3707–3713.

Efimov D., Polyakov A., Aleksandrov A. Discretization of homogeneous systems using Euler method with a state-dependent step. Automatica, 2019, vol. 109, Art. no. 108546.

Brogliato B., Polyakov A. Digital implementation of sliding-mode control via the implicit method: A tutorial. International Journal of Robust and Nonlinear Control, 2021, vol. 31, no. 9, pp. 3528–3586.

Aleksandrov A. Yu., Zhabko A. P. Ob ustoichivosti reshenii odnogo klassa nelineinykh raznostnykh sistem [On the stability of solutions of a class of nonlinear difference systems]. Siberian Mathematical Journal, 2003, vol. 44, no. 6, pp. 1217–1225. (In Russian)

Aleksandrov A. Yu., Zhabko A. P. O sokhranenii ustoichivosti pri diskretizatsii sistem obyknovennykh differentsial'nykh uravnenii [On the preservation of stability under discretization of systems of ordinary differential equations]. Siberian Mathematical Journal, 2010, vol. 51, no. 3, pp. 481–497. (In Russian)

Persidskii S. K. Problem of absolute stability. Automation and Remote Control, 1969, no. 12, pp. 1889–1895.

Kaszkurewicz E., Bhaya A. Matrix diagonal stability in systems and computation. Boston, Basel, Berlin, Birkhauser Press, 1999, 267 p.

Hofbauer J., Sigmund K. Evolutionary games and population dynamics. Cambridge, Cambridge University Press, 1998, 323 p.

Erickson K., Michel A. Stability analysis of fixed-point digital filters using computer generated Lyapunov functions. Pt I: Direct form and coupled form filters. IEEE Transactions on Circuits and Systems, 1985, vol. 32, pp. 113–132.

Hopfield J., Tank D. Computing with neural circuits: a model. Science, 1986, vol. 233, pp. 625–633.

Sandberg I. W., Willson A. N. Some theorems on properties of DC equations of nonlinear networks. The Bell System Technical Journal, 1969, vol. 48, pp. 1–34.

Aleksandrov A. Yu. Ob ustoichivosti po nelineinomu priblizheniiu odnogo klassa neavtonomnykh sistem [On stability in nonlinear approximation of a class of nonautonomous systems]. Differential Equations, 2000, vol. 36, no. 7, pp. 993–995. (In Russian)

Lurie A. I. Nekotorye nelineinye zadachi teorii avtomaticheskogo regulirovaniia [Some nonlinear problems in the theory of automatic control ]. Moscow, Gostehizdat Publ., 1951, 216 p. (In Russian)

Rouche N., Habets P., Laloy M. Stability theory by Liapunov's direct method. New York, Springer Publ., 1977, 396 p.

Liao X., Yu P. Absolute stability of nonlinear control systems. New York, Springer Publ., 2008, 384 p.

Aleksandrov A., Aleksandrova E., Zhabko A. Asymptotic stability conditions and estimates of solutions for nonlinear multiconnected time-delay systems. Circuits, Systems, and Signal Processing, 2016, vol. 35, pp. 3531–3554.

Aleksandrov A., Aleksandrova E. Delay-independent stability conditions for a class of nonlinear difference systems. Journal of the Franklin Institute, 2018, vol. 355, pp. 3367–3380.

Aleksandrov A. Yu. Ob asimptoticheskoi ustoichivosti reshenii nelineinykh neavtonomnykh sistem [On the asymptotic stability of solutions of nonlinear nonautonomous systems]. Proceedings of RAN. Theory and control systems, 1999, no. 2, pp. 5–9. (In Russian)

Merkin D. R. Vvedenie v teoriiu ustoichivosti [Introduction to the stability theory]. Moscow, Nauka Publ., 1976, 320 p. (In Russian)

Published

2023-10-21

How to Cite

Aleksandrov, A. Y. (2023). Application of the implicit Euler method for the discretization of some classes of nonlinear systems. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 19(3), 304–319. https://doi.org/10.21638/11701/spbu10.2023.301

Issue

Section

Applied Mathematics