Method for finding the cost-optimal road trajectory on the surface of the terrain

Authors

  • Majid E. Abbasov St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation; Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, 61, Bolshoy pr. V.O., St. Petersburg, 199178, Russian Federation
  • Artyom S. Sharlay St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation; Military Academy of Logistics (VAMTO named after A. V. Hrulev), 1, Suvorovskaya uh, Peterhof, St. Petersburg, 198504, Russian Federation

DOI:

https://doi.org/10.21638/11701/spbu10.2023.201

Abstract

The paper studies a method for finding the cost-optimal trajectory of a road connecting two points on a given terrain. Situations are considered when the cost of delivery of materials is a constant value, as well as a more general formulation of the problem, in which the cost of delivery depends on the coordinate of a point. In each case, an integral functional is constructed cost, the argument in which is a function that describes the trajectory of the path. The Ritz method is used to find an approximate solution. It is set analytically, in the form of a trigonometric polynomial, which increases the convenience of processing and further research of the results obtained in comparison with the numerical solution of the necessary conditions for the extremum of the investigated functional. The paper also discusses the problem of convergence. Illustrative examples are given.

Keywords:

calculus of variations, optimization, Ritz method, trigonometric polynomial

Downloads

Download data is not yet available.
 

References

Литература

Аббасов М. Э., Шарлай А. С. Метод получения оптимальной по стоимости строительства траектории дороги на рельефе местности // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2021. Т. 17. Вып. 1. С. 4-12. https://doi.org/10.21638/11701/spbu10.2021.101

Бахвалов Н. С., Жидков Н. П., Кобельков Г. М. Численные методы. M.: БИНОМ, Лаборатория знаний, 2008. 636 с.

Канторович Л. В., Крылов В. И. Приближенные методы высшего анализа. Л.: Физматиз, 1962. 708 с.

Эльсгольц Л. Э. Дифференциальные уравнения и вариационное исчисление. М.: Наука, 1969. 424 c.

Люстерник Л. А., Лаврентьев М. А. Курс вариационного исчисления. М.: Гос. объед. науч.-технич. изд-во, 1938. 192 c.

Mordukhovich B. S. Variational analysis and generalized differentiation II. Berlin; Heidelberg: Springer-Verlag, 2006. 610 p.

Rindler F. Calculus of variations. Switzerland; Cham: Springer International Publishing, 2018. 444 p.

Треногин В. А. Функциональный анализ. М.: Наука, 1980. 495 с.

Nemat A., Yousefi S. A. A numerical method for solving fractional optimal control problems using Ritz method // ASME. J. Comput. Nonlinear Dynam. 2016. Vol. 11(5). N 051015.

Ali A. M., Jasim M. H., Al-Kasob B. D. H. Low velocity impact study of a sandwich beams using Ritz method and finite element modelling // Journal of Engineering, Design and Technology. 2022. https://doi.org/10.1108/JEDT-10-2021-0584

Lytvyn O. M., Lytvyn O. O., Tomanova I. S. Solving the biharmonic plate bending problem by the Ritz method using explicit formulas for splines of degree 5 // Cybern Syst. Anal. 2018. Vol. 54. P. 944-947.

Xue J., Wang Y. Free vibration analysis of a flat stiffened plate with side crack through the Ritz method // Arch. Appl. Mech. 2019. Vol. 89. P. 2089-2102.

References

Abbasov M. E., Sharlay A. S. Metod polucheniia optimal'noi po stoimosti stroitel'stva traektorii dorogi na rel'efe mestnosti [Searching for the cost-optimal road trajectory on the relief of the terrain]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2021, vol. 17, iss. 1, pp. 4-12. https://doi.org/10.21638/11701/spbu10.2021.101 (In Russian)

Bahvalov N. S, Zhidkov N. P., Kobelkov G. M. Chislennye metody [ Numerical methods ]. Moscow, BINOM, Laboratoriia znanii Publ., 2008, 636 p. (In Russian)

Kantorovich L. V., Krylov V. I. Priblizhennye metody vysshego analiza [ Approximate methods of higher analysis ]. Leningrad, Fizmatiz Publ., 1962, 708 p. (In Russian)

Elsgolc L. E. Differentsial’nye uravneniia i variatsionnoe ischislenie [ Differential equations and calculus of variations ]. Moscow, Nauka Publ., 1969, 424 p. (In Russian)

Lyusternik L. A., Lavrentev M. A. Kurs variatsionnogo ischisleniia [ Course of calculus of variations ]. Moscow, State United Scientific and Technical Publishing House, 1938, 192 p. (In Russian)

Mordukhovich B. S. Variational analysis and generalized differentiation II. Berlin, Heidelberg, Springer-Verlag Publ., 2006, 610 p.

Rindler F. Calculus of variations. Switzerland; Cham, Springer International Publ., 2018, 444 p.

Trenogin V. A. Funktsional’nyi analiz [ Functional analysis ]. Moscow, Nauka Publ., 1980, 495 p. (In Russian)

Nemat A., Yousefi S. A. A numerical method for solving fractional optimal control problems using Ritz method. ASME. J. Comput. Nonlinear Dynam., 2016, vol. 11(5), no. 051015.

Ali A. M., Jasim M. H., Al-Kasob B. D. H. Low velocity impact study of a sandwich beams using Ritz method and finite element modelling. Journal of Engineering, Design and Technology, 2022. https://doi.org/10.1108/JEDT-10-2021-0584

Lytvyn O. M., Lytvyn O. O., Tomanova I. S. Solving the biharmonic plate bending problem by the Ritz method using explicit formulas for splines of degree 5. Cybern Syst. Anal., 2018, vol. 54, pp. 944-947.

Xue J., Wang Y. Free vibration analysis of a flat stiffened plate with side crack through the Ritz method. Arch. Appl. Mech., 2019, vol. 89, pp. 2089-2102.

Published

2023-07-27

How to Cite

Abbasov, M. E., & Sharlay, A. S. (2023). Method for finding the cost-optimal road trajectory on the surface of the terrain. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 19(2), 139–147. https://doi.org/10.21638/11701/spbu10.2023.201

Issue

Section

Applied Mathematics