Equilibrium in the problem of choosing the meeting time for N persons

Authors

  • Vladimir V. Mazalov Institute of Applied Mathematical Research, Karelian Research Centre of Russian Academy of Sciences, 11, ul. Pushkinskaya, Petrozavodsk, 185910, Russian Federation; St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation https://orcid.org/0000-0003-2262-2620
  • Vladimir V. Yashin Institute of Applied Mathematical Research, Karelian Research Centre of Russian Academy of Sciences, 11, ul. Pushkinskaya, Petrozavodsk, 185910, Russian Federation https://orcid.org/0009-0009-9971-1964

DOI:

https://doi.org/10.21638/11701/spbu10.2022.405

Abstract

A game-theoretic model of competitive decision on a meet time is considered. There are n players who are negotiating the meeting time. The objective is to find a meet time that satisfies all participants. The players' utilities are represented by linear unimodal functions ui(x), x∈ [0, 1], i=1,2,...,n. The maximum values of the utility functions are located at the points i/(n-1),  i=0,...,n-1. Players take turns 1 → 2→ 3 → ...→ (n-1) → n → 1→... . Players can indefinitely insist on a profitable solution for themselves. To prevent this from happening, a discounting factor δ<1 is introduced to limit the duration of negotiations. We will assume that after each negotiation session, the utility functions of all players will decrease proportionally to δ. Thus, if the players have not come to a decision before time t, then at time t their utilities are represented by the functions δt-1ui(x), i = 1, 2,..., n. We will look for a solution in the class of stationary strategies, when it is assumed that the decisions of the players will not change during the negotiation time, i. e. the player i will make the same offer at step i and at subsequent steps n+i, 2n+i, ... . This will allow us to limit ourselves to considering the chain of sentences 1 → 2 → 3 → ... →(n-1) → n→ 1. We will use the method of backward induction. To do this, assume that player n is looking for his best responce, knowing player 1's proposal, then player (n-1) is looking for his best responce, knowing player n's solution, etc. In the end, we find the best responce of the player 1, and it should coincide with his offer at the beginning of the procedure. Thus, the reasoning in the method of backward induction has the form 1 ← 2←  3← ... ←(n-1)← n← 1. The subgame perfect equilibrium in the class of stationary strategies is found in analytical form. It is shown that when δ changes from 1 to 0, the optimal offer of player 1 changes from 1/2 to 1. That is, when the value of δ is close to 1, the players have a lot of time to negotiate, so the offer of player 1 should be fair to everyone. If the discounting factor is close to 0, the utilities of the players decreases rapidly and they must quickly make a decision that is beneficial to player 1.

Keywords:

optimal timing, linear utility functions, sequential bargaining, Rubinstein bargaining model, subgame perfect equilibrium, stationary strategies, backward induction

Downloads

Download data is not yet available.
 

References

Литература

Rubinstein A. Perfect equilibrium in a bargaining model // Econometrica. 1982. Vol. 50(1). P. 97-109. https://doi.org/10.2307/1912531

Baron D., Ferejohn J. Bargaining in legislatures // American Political Science Association. 1989. Vol. 83(4). P. 1181-1206. https://doi.org/10.2307/1961664

Eraslan Y. Uniqueness of stationary equilibrium payoffs in the Baron-Ferejohn model // Journal of Economic Theory. 2002. Vol. 103. P. 11-30.

Cho S., Duggan J. Uniqueness of stationary equilibria in a one-dimensional model of bargaining // Journal of Economic Theory. 2003. Vol. 113(1). P. 118-130. https://doi.org/10.1016/S0022-0531(03)00087-5

Banks J. S., Duggan J. A general bargaining model of legislative policy-making // Quarterly Journal of Political Science. 2006. Vol. 1. P. 49-85. https://doi.org/10.2307/2586381

Predtetchinski A. One-dimensional bargaining // Games and Economic Behavior. 2011. Vol. 72(2). P. 526-543.

Мазалов В. В., Носальская Т. Э. Стохастический дизайн в задаче о дележе пирога // Математическая теория игр и ее приложения. 2012. Т. 4(3). С. 33-50.

Mazalov V. V., Nosalskaya T. E., Tokareva J. S. Stochastic Cake Division Protocol // International Game Theory Review. 2014. Vol. 16(2). N 1440009.

Мазалов В. В., Токарева Ю. С. Теоретико-игровые модели проведения конкурсов // Математическая теория игр и ее приложения. 2014. Т. 2(2). С. 66-78.

Буре В. М. Об одной теоретико-игровой модели тендера // Вестник Санкт-Петербургского университета. Сер. 10. Прикладная математика. Информатика. Процессы управления. 2015. Вып. 1. C. 25-32.

Губанов Д. А., Новиков Д. А., Чхартишвили А. Г. Социальные сети: модели информационного влияния, управления и противоборства. М.: Физматлит, 2010. 229 с.

Буре В. М., Парилина Е. М., Седаков А. А. Консенсус в социальной сети с двумя центрами влияния // Проблемы управления. 2016. Т. 1. С. 21-28.

Sedakov A. A., Zhen M. Opinion dynamics game in a social network with two influence nodes // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2019. Т. 15. Вып. 1. С. 118-125. https://doi.org/10.21638/11701/spbu10.2019.10

Бурков В. Н., Коргин Н. А., Новиков Д. А. Введение в теорию управления организационными системами. М.: Либроком, 2009. 264 с.

Новиков Д. А. Теория управления организационными системами. М.: Моск. психол.-соц. ин-т, 2005. 584 с.

Cardona D., Ponsati C. Bargaining one-dimensional social choices // Journal of Economic Theory. 2007. Vol. 137(1). P. 627-651. https://doi.org/10.1016/j.jet.2006.12.001

Cardona D., Ponsati C. Uniqueness of stationary equilibria in bargaining one-dimentional polices under (super) majority rules // Game and Economic Behavior. 2011. Vol. 73(1). P. 65-67. https://doi.org/10.1016/j.geb.2011.01.006

Breton M., Thomas A., Zaporozhets V. Bargaining in River Basin Committees: Rules versus // IDEI working papers. 2012. Vol. 732. P. 1-38.

References

Rubinstein A. Perfect equilibrium in a Bargaining Model. Econometrica, 1982, vol. 50(1), pp. 97-109. https://doi.org/10.2307/1912531

Baron D., Ferejohn J. Bargaining in legislatures. American Political Science Association, 1989, vol. 83(4), pp. 1181-1206. https://doi.org/10.2307/1961664

Eraslan Y. Uniqueness of stationary equilibrium payoffs in the Baron-Ferejohn model. Journal of Economic Theory, 2002, vol. 103, pp. 11-30.

Cho S., Duggan J. Uniqueness of stationary equilibria in a one-dimensional model of bargaining. Journal of Economic Theory, 2003, vol. 113(1), pp. 118-130. https://doi.org/10.1016/S0022-0531(03)00087-5

Banks J. S., Duggan J. A general bargaining model of legislative policy-making. Quarterly Journal of Political Science, 2006, vol. 1, pp. 49-85. https://doi.org/10.2307/2586381

Predtetchinski A. One-dimensional bargaining. Games and Economic Behavior, 2011, vol. 72(2), pp. 526-543.

Mazalov V. V., Nosalskaya T. E. Stohasticheskij dizajn v zadache o delezhe piroga [Stochastic design in the cake division problem]. Matematicheskaya teoriya igr i eio prilozheniya [ Matematic theory and supplement], 2012, vol. 4(3), pp. 33-50. (In Russian)

Mazalov V. V., Nosalskaya T. E., Tokareva J. S. Stochastic Cake Division Protocol. International Game Theory Review, 2014, vol. 16(2), no. 1440009.

Mazalov V. V., Tokareva J. S. Teoretiko-igrovye modeli provedeniya konkursov [Game-theoretic models of tender design]. Matematicheskaya teoriya igr i eio prilozheniya [ Matematic theory and supplement], 2014, vol. 2(2), pp. 66-78. (In Russian)

Bure V. M. Ob odnoj teoretiko-igrovoj modeli tendera [Оne game-theoretical tender model]. Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2015, iss. 1, pp. 25-32. (In Russian)

Gubanov D. A., Novikov D. A., Chartishvili A. G. Social'nye seti: modeli informacionnogo vliyaniya, upravleniya i protivoborstva [ Informational influence and informational control models in social networks ]. Moscow, Fizmatlit Publ., 2010, 229 p. (In Russian)

Bure V. M., Parilina E. M., Sedakov A. A. Konsensus v social'noj seti s dvumya centrami vliyaniya [Consensus in a social network with two principals]. Automation and Remote Control, 2016, vol. 1, pp. 21-28. (In Russian)

Sedakov A. A., Zhen M. Opinion dynamics game in a social network with two influence nodes. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2019, vol. 15, iss. 1, pp. 118-125. https://doi.org/10.21638/11701/spbu10.2019.10

Burkov V. N., Korgin N. A., Novikov D. A. Vvedenie v teoriyu upravleniya organizacionnymi sistemami [ Introduction to the theory of management of organizational systems]. Moscow, Librocom Publ., 2009, 264 p. (In Russian)

Novikov D. A. Teoriya upravleniya organizacionnymi sistemami [ Theory of management of organizational systems ]. Moscow, Moscow Psychological and Social Institute Publ., 2005, 584 p. (In Russian)

Cardona D., Ponsati C. Bargaining one-dimensional social choices. Journal of Economic Theory, 2007, vol. 137(1), pp. 627-651. https://doi.org/10.1016/j.jet.2006.12.001

Cardona D., Ponsati C. Uniqueness of stationary equilibria in bargaining one-dimentional polices under (super) majority rules. Game and Economic Behavior, 2011, vol. 73(1), pp. 65-67. https://doi.org/10.1016/j.geb.2011.01.006

Breton M., Thomas A., Zaporozhets V. Bargaining in River Basin Committees: Rules versus. IDEI working papers, 2012, vol. 732, pp. 1-38.

Published

2023-03-02

How to Cite

Mazalov, V. V., & Yashin, V. V. (2023). Equilibrium in the problem of choosing the meeting time for N persons. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 18(4), 501–515. https://doi.org/10.21638/11701/spbu10.2022.405

Issue

Section

Applied Mathematics