Применение подходов радиомики в обработке данных компьютерной томографии при определении саркопении
DOI:
https://doi.org/10.21638/spbu10.2024.306Аннотация
В статье представлен алгоритм, реализующий радиомический подход к обработке данных компьютерной томографии (КТ) для диагностики саркопении. Предлагаемый метод включает выделение области интереса, автоматическую сегментацию мышц с использованием моделей глубокого обучения, извлечение из КТ-изображений радиомических признаков, построение корреляционных матриц и выбор критериев для классификации. Результаты показывают, что полученные радиомические параметры имеют значимую корреляцию с наличием саркопении. Это позволяет строить точные модели классификации на основе машинного обучения. Данный подход может значительно улучшить диагностику саркопении, предоставляя надежные неинвазивные методы анализа.
Ключевые слова:
радиомика, текстурный анализ, машинное обучение, саркопения
Скачивания
Библиографические ссылки
Chen Y.-C., Hsieh J.-W., Yang Y.-H., Lee C.-H., Yu P.-Y., Chen P.-Y., San A. S. Towards deep learning-based sarcopenia screening with body joint composition analysis // 2021 IEEE International Conference on Image Processing (ICIP). Anchorage, AK, USA, 2021. P. 3807–3811. https://doi.org/10.1109/ICIP42928.2021.9506482
Chung H., Jo Y., Ryu D., Jeong C., Choe S. K., Lee J. Artificial-intelligence-driven discovery of prognostic biomarker for sarcopenia // Journal of Cachexia, Sarcopenia and Muscle. 2021. Vol. 12. N 6. P. 2220–2230. https://doi.org/10.1002/jcsm.12840
Castillo-Olea C., Garcia-Zapirain S. B., Carballo L. C., Zuniga C. Automatic classification of sarcopenia level in older adults: A case study at Tijuana General Hospital // International Journal of Environmental Research and Public Health. 2019. Vol. 16. N 18. P. 3275. https://doi.org/10.3390/ijerph16183275
Ackermans L. L. G. C., Rabou J., Basrai M., Schweinlin A., Bischoff S. C., Cussenot O., Cancel-Tassin G., Renken R. J., Gomez E., Sanchez-Gonzalez P., Rainoldi A., Boccia G., Reisinger K. W., Bosch J. A. T., Blokhuis T. J. Screening, diagnosis and monitoring of sarcopenia: When to use which tool? // Clin. Nutr. ESPEN. 2022. Vol. 48. P. 36–44. https://doi.org/10.1016/j.clnesp.2022.01.027
Xie H., Gong Y., Kuang J., Yan L., Ruan G., Tang S., Gao F., Gan J. Computed tomography-determined sarcopenia is a useful imaging biomarker for predicting postoperative outcomes in elderly colorectal cancer patients // Cancer Research and Treatment. 2020. Vol. 52. N 3. P. 957–972. https://doi.org/10.4143/crt.2019.695
Jalal M., Campbell J. A., Wadsley J., Hopper A. D. Computed tomographic sarcopenia in pancreatic cancer: Further utilization to plan patient management // Journal of Gastrointest Cancer. 2021. Vol. 52. N 3. P. 1183–1187. https://doi.org/10.1007/s12029-021-00672-4
Сморчкова А. К., Петряйкин А. В., Семенов Д. С., Шарова Д. Е. Саркопения: современные подходы к решению диагностических задач // Digital Diagnostics. 2022. Т. 3. № 3. С. 196–211. https://doi.org/10.17816/DD110721
Ueki H., Hara T., Okamura Y., Bando Y., Terakawa T., Furukawa J., Harada K., Nakano Y., Fujisawa M. Association between sarcopenia based on psoas muscle index and the response to nivolumab in metastatic renal cell carcinoma: A retrospective study // Investig. Clin. Urol. 2022. Vol. 63. N 4. P. 415–424. https://doi.org/10.4111/icu.20220028
Kim S., Kim T.-H., Jeong C.-W., Lee C., Noh S., Kim J. E., Yoon K.-H. Development of quantification software for evaluating body composition contents and its clinical application in sarcopenic obesity // Scientific Reports. 2020. Vol. 10. Art. N 10452. https://doi.org/10.1038/s41598-020-67461-0
Chicklore S., Goh V., Siddique M., Roy A., Marsden P. K., Cook G. J. R. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis // European Journal of Nuclear Medicine and Molecular Imaging. 2012. Vol. 40. N 1. P. 133–140. https://doi.org/10.1007/s00259-012-2247-0
Cook G., Siddique M., Taylor B., Yip C., Chicklore S., Goh V. Radiomics in PET: principles and applications // Clinical and Translational Imaging. 2014. Vol. 2. N 3. P. 269–276. https://doi.org/10.1007/s40336-014-0064-0
Schmidt I., Kotina E., Buev P. Deep learning muscle segmentation model for CT images in DICOM format // Cybernetics and Physics. 2023. Vol. 12. N 3. P. 201–206. https://doi.org/10.35470/2226-4116-2023-12-3-201-206
Шмидт Я. А., Котина Е. Д., Камышанская И. Г., Макаренко Б. Г. Радиомика в исследовании саркопении по КТ-изображениям // Диагностическая и интервенционная радиология. 2024. Т. 18. № S2.1. С. 94–99.
Shmidt Y. A., Kotina E. D., Kamyshanskaya I. G., Makarenko B. G. Application of radiomics criteria in the study of sarcopenia based on abdominal computed tomography data // Diagnostic Radiology and Radiotherapy. 2024. Vol. S(15). P. 195–196. Print 2079-5343.
Islam S., Kanavati F., Arain Z., Costa O. F. D. , Crum W., Aboagye E. O., Rockall A. G. Fully-automated deep learning slice-based muscle estimation from CT images for sarcopenia assessment // Clinical Radiology. 2022. Vol. 77. N 5. P. e363–e371. https://doi.org/10.1016/j.crad.2022.01.036
Ha J., Park T., Kim H.-K., Shin Y., Ko Y., Kim D. W., Sung Y. S., Lee J., Ham S. J., Khang S., Jeong H., Koo K., Lee J., Kim K. W. Development of a fully automatic deep learning system for L3 selection and body composition assessment on computed tomography // Scientific Reports. 2021. Vol. 11. N 1. P. 21656. https://doi.org/10.1038/s41598-021-00161-5
Zwanenburg A., Leger S., Vallieres M., Löck S. Image biomarker standardisation initiative // arXiv preprint. arXiv: 1612.07003. 2016.
Löfstedt T., Brynolfsson P., Asklund T., Nyholm T., Garpebring A. Gray-level invariant Haralick texture features // PLoS One. 2019. Vol. 14. N 2. P. e0212110. https://doi.org/10.1371/journal.pone.0212110
References
Chen Y.-C., Hsieh J.-W., Yang Y.-H., Lee C.-H., Yu P.-Y., Chen P.-Y., San A. S. Towards deep learning-based sarcopenia screening with body joint composition analysis. 2021 IEEE International Conference on Image Processing (ICIP). Anchorage, AK, USA, 2021, pp. 3807–3811. https://doi.org/10.1109/ICIP42928.2021.9506482
Chung H., Jo Y., Ryu D., Jeong C., Choe S. K., Lee J. Artificial-intelligence-driven discovery of prognostic biomarker for sarcopenia. Journal of Cachexia Sarcopenia Muscle, 2021, vol. 12, no. 6, pp. 2220–2230. https://doi.org/10.1002/jcsm.12840
Castillo-Olea C., Garcia-Zapirain S. B., Carballo L. C., Zuniga C. Automatic classification oflinebreaknewpagenoindent sarcopenia level in older adults: A case study at Tijuana General Hospital. International Journal of Environmental Research and Public Health, 2019, vol. 16, no. 18, p. 3275. https://doi.org/10.3390/ijerph16183275
Ackermans L. L. G. C., Rabou J., Basrai M., Schweinlin A., Bischoff S. C., Cussenot O., Cancel-Tassin G., Renken R. J., Gomez E., Sanchez-Gonzalez P., Rainoldi A., Boccia G., Reisinger K. W., Bosch J. A. T., Blokhuis T. J. Screening, diagnosis and monitoring of sarcopenia: When to use which tool? Clin. Nutr. ESPEN, 2022, vol. 48, pp. 36–44. https://doi.org/10.1016/j.clnesp.2022.01.027
Xie H., Gong Y., Kuang J., Yan L., Ruan G., Tang S., Gao F., Gan J. Computed tomography-determined sarcopenia is a useful imaging biomarker for predicting postoperative outcomes in elderly colorectal cancer patients. Cancer Research and Treatment, 2020, vol. 52, no. 3, pp. 957–972. https://doi.org/10.4143/crt.2019.695
Jalal M., Campbell J. A., Wadsley J., Hopper A. D. Computed tomographic sarcopenia in pancreatic cancer: Further utilization to plan patient management. Journal of Gastrointest Cancer, 2021 vol. 52, no. 3, pp. 1183–1187. https://doi.org/10.1007/s12029-021-00672-4
Smorchkova A. K., Petraikin A. V., Semenov D. S., Sharova D. E. Sarkopeniia: sovremennye podkhody k resheniiu diagnosticheskikh zadach [Sarcopenia: modern approaches to solving diagnosis problems]. Digital Diagnostics, 2022, vol. 3, no. 3, pp. 196–211. https://doi.org/10.17816/DD110721 (In Russian)
Ueki H., Hara T., Okamura Y., Bando Y., Terakawa T., Furukawa J., Harada K., Nakano Y., Fujisawa M. Association between sarcopenia based on psoas muscle index and the response to nivolumab in metastatic renal cell carcinoma: A retrospective study. Investig. Clin. Urol., 2022, vol. 63, no. 4, pp. 415–424. https://doi.org/10.4111/icu.20220028
Kim S., Kim T.-H., Jeong C.-W., Lee C., Noh S., Kim J. E., Yoon K.-H. Development of quantification software for evaluating body composition contents and its clinical application in sarcopenic obesity. Scientific Reports, 2020, vol. 10, art. no. 10452. https://doi.org/10.1038/s41598-020-67461-0
Chicklore S., Goh V., Siddique M., Roy A., Marsden P. K., Cook G. J. R. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. European Journal of Nuclear Medicine and Molecular Imaging, 2012, vol. 40, no. 1, pp. 133–140. https://doi.org/10.1007/s00259-012-2247-0
Cook G., Siddique M., Taylor B., Yip C., Chicklore S., Goh V. Radiomics in PET: principles and applications. Clinical and Translational Imaging, 2014, vol. 2, no. 3, pp. 269–276. https://doi.org/10.1007/s40336-014-0064-0
Schmidt I., Kotina E., Buev P. Deep learning muscle segmentation model for CT images in DICOM format. Cybernetics and Physics, 2023, vol. 12, no. 3, pp. 201–206. https://doi.org/10.35470/2226-4116-2023-12-3-201-206
Shmidt I. A., Kotina E. D., Kamyshanskaya I. G., Makarenko B. G. Radiomika v issledovanii sarkopenii po KT izobrazheniiam [Radiomics in the study of sarcopenia using CT images]. Diagnostic and Interventional Radiology, 2024, vol. 18, no. S2.1, pp. 94–99. (In Russian)
Shmidt Y. A., Kotina E. D., Kamyshanskaya I. G., Makarenko B. G. Application of radiomics criteria in the study of sarcopenia based on abdominal computed tomography data. Diagnostic Radiology and Radiotherapy, 2024, vol. S(15), pp. 195–196. Print 2079-5343.
Islam S., Kanavati F., Arain Z., Costa O. F. D., Crum W., Aboagye E. O., Rockall A. G. Fully-automated deep learning slice-based muscle estimation from CT images for sarcopenia assessment. Clinical Radiology, 2022, vol. 77, no. 5, pp. e363–e371. https://doi.org/10.1016/j.crad.2022.01.036
Ha J., Park T., Kim H.-K., Shin Y., Ko Y., Kim D. W., Sung Y. S., Lee J., Ham S. J., Khang S., Jeong H., Koo K., Lee J., Kim K. W. Development of a fully automatic deep learning system for L3 selection and body composition assessment on computed tomography. Scientific Reports, 2021, vol. 11, no. 1, p. 21656. https://doi.org/10.1038/s41598-021-00161-5
Zwanenburg A., Leger S., Vallieres M., Löck S. Image biomarker standardisation initiative. arXiv preprint, arXiv: 1612.07003. 2016.
Löfstedt T., Brynolfsson P., Asklund T., Nyholm T., Garpebring A. Gray-level invariant Haralick texture features. PLoS One, 2019, vol. 14, no. 2, p. e0212110. https://doi.org/10.1371/journal.pone.0212110
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Статьи журнала «Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления» находятся в открытом доступе и распространяются в соответствии с условиями Лицензионного Договора с Санкт-Петербургским государственным университетом, который бесплатно предоставляет авторам неограниченное распространение и самостоятельное архивирование.