Applying radiomics in computed tomography data analysis to predict sarcopenia

Authors

  • Ian A. Schmidt St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation https://orcid.org/0009-0001-0141-0517
  • Elena D. Kotina St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-2057-682X

DOI:

https://doi.org/10.21638/spbu10.2024.306

Abstract

This article presents an algorithm implementing a radiomics approach to processing computed tomography (CT) data for diagnosing sarcopenia. The proposed method includes region of interest extraction, automatic muscle segmentation using deep learning models, extraction of radiomic features from CT-images, construction of correlation matrices, and selection of criteria for classification. The results show that the obtained radiomic parameters have a significant correlation with the presence of sarcopenia, allowing the construction of accurate classification models based on machine learning. This approach can significantly improve the diagnosis of sarcopenia, providing reliable non-invasive analysis methods.

Keywords:

radiomics, texture analysis, machine learning, sarcopenia

Downloads

Download data is not yet available.
 

References

Литература

Chen Y.-C., Hsieh J.-W., Yang Y.-H., Lee C.-H., Yu P.-Y., Chen P.-Y., San A. S. Towards deep learning-based sarcopenia screening with body joint composition analysis // 2021 IEEE International Conference on Image Processing (ICIP). Anchorage, AK, USA, 2021. P. 3807–3811. https://doi.org/10.1109/ICIP42928.2021.9506482

Chung H., Jo Y., Ryu D., Jeong C., Choe S. K., Lee J. Artificial-intelligence-driven discovery of prognostic biomarker for sarcopenia // Journal of Cachexia, Sarcopenia and Muscle. 2021. Vol. 12. N 6. P. 2220–2230. https://doi.org/10.1002/jcsm.12840

Castillo-Olea C., Garcia-Zapirain S. B., Carballo L. C., Zuniga C. Automatic classification of sarcopenia level in older adults: A case study at Tijuana General Hospital // International Journal of Environmental Research and Public Health. 2019. Vol. 16. N 18. P. 3275. https://doi.org/10.3390/ijerph16183275

Ackermans L. L. G. C., Rabou J., Basrai M., Schweinlin A., Bischoff S. C., Cussenot O., Cancel-Tassin G., Renken R. J., Gomez E., Sanchez-Gonzalez P., Rainoldi A., Boccia G., Reisinger K. W., Bosch J. A. T., Blokhuis T. J. Screening, diagnosis and monitoring of sarcopenia: When to use which tool? // Clin. Nutr. ESPEN. 2022. Vol. 48. P. 36–44. https://doi.org/10.1016/j.clnesp.2022.01.027

Xie H., Gong Y., Kuang J., Yan L., Ruan G., Tang S., Gao F., Gan J. Computed tomography-determined sarcopenia is a useful imaging biomarker for predicting postoperative outcomes in elderly colorectal cancer patients // Cancer Research and Treatment. 2020. Vol. 52. N 3. P. 957–972. https://doi.org/10.4143/crt.2019.695

Jalal M., Campbell J. A., Wadsley J., Hopper A. D. Computed tomographic sarcopenia in pancreatic cancer: Further utilization to plan patient management // Journal of Gastrointest Cancer. 2021. Vol. 52. N 3. P. 1183–1187. https://doi.org/10.1007/s12029-021-00672-4

Сморчкова А. К., Петряйкин А. В., Семенов Д. С., Шарова Д. Е. Саркопения: современные подходы к решению диагностических задач // Digital Diagnostics. 2022. Т. 3. № 3. С. 196–211. https://doi.org/10.17816/DD110721

Ueki H., Hara T., Okamura Y., Bando Y., Terakawa T., Furukawa J., Harada K., Nakano Y., Fujisawa M. Association between sarcopenia based on psoas muscle index and the response to nivolumab in metastatic renal cell carcinoma: A retrospective study // Investig. Clin. Urol. 2022. Vol. 63. N 4. P. 415–424. https://doi.org/10.4111/icu.20220028

Kim S., Kim T.-H., Jeong C.-W., Lee C., Noh S., Kim J. E., Yoon K.-H. Development of quantification software for evaluating body composition contents and its clinical application in sarcopenic obesity // Scientific Reports. 2020. Vol. 10. Art. N 10452. https://doi.org/10.1038/s41598-020-67461-0

Chicklore S., Goh V., Siddique M., Roy A., Marsden P. K., Cook G. J. R. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis // European Journal of Nuclear Medicine and Molecular Imaging. 2012. Vol. 40. N 1. P. 133–140. https://doi.org/10.1007/s00259-012-2247-0

Cook G., Siddique M., Taylor B., Yip C., Chicklore S., Goh V. Radiomics in PET: principles and applications // Clinical and Translational Imaging. 2014. Vol. 2. N 3. P. 269–276. https://doi.org/10.1007/s40336-014-0064-0

Schmidt I., Kotina E., Buev P. Deep learning muscle segmentation model for CT images in DICOM format // Cybernetics and Physics. 2023. Vol. 12. N 3. P. 201–206. https://doi.org/10.35470/2226-4116-2023-12-3-201-206

Шмидт Я. А., Котина Е. Д., Камышанская И. Г., Макаренко Б. Г. Радиомика в исследовании саркопении по КТ-изображениям // Диагностическая и интервенционная радиология. 2024. Т. 18. № S2.1. С. 94–99.

Shmidt Y. A., Kotina E. D., Kamyshanskaya I. G., Makarenko B. G. Application of radiomics criteria in the study of sarcopenia based on abdominal computed tomography data // Diagnostic Radiology and Radiotherapy. 2024. Vol. S(15). P. 195–196. Print 2079-5343.

Islam S., Kanavati F., Arain Z., Costa O. F. D. , Crum W., Aboagye E. O., Rockall A. G. Fully-automated deep learning slice-based muscle estimation from CT images for sarcopenia assessment // Clinical Radiology. 2022. Vol. 77. N 5. P. e363–e371. https://doi.org/10.1016/j.crad.2022.01.036

Ha J., Park T., Kim H.-K., Shin Y., Ko Y., Kim D. W., Sung Y. S., Lee J., Ham S. J., Khang S., Jeong H., Koo K., Lee J., Kim K. W. Development of a fully automatic deep learning system for L3 selection and body composition assessment on computed tomography // Scientific Reports. 2021. Vol. 11. N 1. P. 21656. https://doi.org/10.1038/s41598-021-00161-5

Zwanenburg A., Leger S., Vallieres M., Löck S. Image biomarker standardisation initiative // arXiv preprint. arXiv: 1612.07003. 2016.

Löfstedt T., Brynolfsson P., Asklund T., Nyholm T., Garpebring A. Gray-level invariant Haralick texture features // PLoS One. 2019. Vol. 14. N 2. P. e0212110. https://doi.org/10.1371/journal.pone.0212110


References

Chen Y.-C., Hsieh J.-W., Yang Y.-H., Lee C.-H., Yu P.-Y., Chen P.-Y., San A. S. Towards deep learning-based sarcopenia screening with body joint composition analysis. 2021 IEEE International Conference on Image Processing (ICIP). Anchorage, AK, USA, 2021, pp. 3807–3811. https://doi.org/10.1109/ICIP42928.2021.9506482

Chung H., Jo Y., Ryu D., Jeong C., Choe S. K., Lee J. Artificial-intelligence-driven discovery of prognostic biomarker for sarcopenia. Journal of Cachexia Sarcopenia Muscle, 2021, vol. 12, no. 6, pp. 2220–2230. https://doi.org/10.1002/jcsm.12840

Castillo-Olea C., Garcia-Zapirain S. B., Carballo L. C., Zuniga C. Automatic classification oflinebreaknewpagenoindent sarcopenia level in older adults: A case study at Tijuana General Hospital. International Journal of Environmental Research and Public Health, 2019, vol. 16, no. 18, p. 3275. https://doi.org/10.3390/ijerph16183275

Ackermans L. L. G. C., Rabou J., Basrai M., Schweinlin A., Bischoff S. C., Cussenot O., Cancel-Tassin G., Renken R. J., Gomez E., Sanchez-Gonzalez P., Rainoldi A., Boccia G., Reisinger K. W., Bosch J. A. T., Blokhuis T. J. Screening, diagnosis and monitoring of sarcopenia: When to use which tool? Clin. Nutr. ESPEN, 2022, vol. 48, pp. 36–44. https://doi.org/10.1016/j.clnesp.2022.01.027

Xie H., Gong Y., Kuang J., Yan L., Ruan G., Tang S., Gao F., Gan J. Computed tomography-determined sarcopenia is a useful imaging biomarker for predicting postoperative outcomes in elderly colorectal cancer patients. Cancer Research and Treatment, 2020, vol. 52, no. 3, pp. 957–972. https://doi.org/10.4143/crt.2019.695

Jalal M., Campbell J. A., Wadsley J., Hopper A. D. Computed tomographic sarcopenia in pancreatic cancer: Further utilization to plan patient management. Journal of Gastrointest Cancer, 2021 vol. 52, no. 3, pp. 1183–1187. https://doi.org/10.1007/s12029-021-00672-4

Smorchkova A. K., Petraikin A. V., Semenov D. S., Sharova D. E. Sarkopeniia: sovremennye podkhody k resheniiu diagnosticheskikh zadach [Sarcopenia: modern approaches to solving diagnosis problems]. Digital Diagnostics, 2022, vol. 3, no. 3, pp. 196–211. https://doi.org/10.17816/DD110721 (In Russian)

Ueki H., Hara T., Okamura Y., Bando Y., Terakawa T., Furukawa J., Harada K., Nakano Y., Fujisawa M. Association between sarcopenia based on psoas muscle index and the response to nivolumab in metastatic renal cell carcinoma: A retrospective study. Investig. Clin. Urol., 2022, vol. 63, no. 4, pp. 415–424. https://doi.org/10.4111/icu.20220028

Kim S., Kim T.-H., Jeong C.-W., Lee C., Noh S., Kim J. E., Yoon K.-H. Development of quantification software for evaluating body composition contents and its clinical application in sarcopenic obesity. Scientific Reports, 2020, vol. 10, art. no. 10452. https://doi.org/10.1038/s41598-020-67461-0

Chicklore S., Goh V., Siddique M., Roy A., Marsden P. K., Cook G. J. R. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. European Journal of Nuclear Medicine and Molecular Imaging, 2012, vol. 40, no. 1, pp. 133–140. https://doi.org/10.1007/s00259-012-2247-0

Cook G., Siddique M., Taylor B., Yip C., Chicklore S., Goh V. Radiomics in PET: principles and applications. Clinical and Translational Imaging, 2014, vol. 2, no. 3, pp. 269–276. https://doi.org/10.1007/s40336-014-0064-0

Schmidt I., Kotina E., Buev P. Deep learning muscle segmentation model for CT images in DICOM format. Cybernetics and Physics, 2023, vol. 12, no. 3, pp. 201–206. https://doi.org/10.35470/2226-4116-2023-12-3-201-206

Shmidt I. A., Kotina E. D., Kamyshanskaya I. G., Makarenko B. G. Radiomika v issledovanii sarkopenii po KT izobrazheniiam [Radiomics in the study of sarcopenia using CT images]. Diagnostic and Interventional Radiology, 2024, vol. 18, no. S2.1, pp. 94–99. (In Russian)

Shmidt Y. A., Kotina E. D., Kamyshanskaya I. G., Makarenko B. G. Application of radiomics criteria in the study of sarcopenia based on abdominal computed tomography data. Diagnostic Radiology and Radiotherapy, 2024, vol. S(15), pp. 195–196. Print 2079-5343.

Islam S., Kanavati F., Arain Z., Costa O. F. D., Crum W., Aboagye E. O., Rockall A. G. Fully-automated deep learning slice-based muscle estimation from CT images for sarcopenia assessment. Clinical Radiology, 2022, vol. 77, no. 5, pp. e363–e371. https://doi.org/10.1016/j.crad.2022.01.036

Ha J., Park T., Kim H.-K., Shin Y., Ko Y., Kim D. W., Sung Y. S., Lee J., Ham S. J., Khang S., Jeong H., Koo K., Lee J., Kim K. W. Development of a fully automatic deep learning system for L3 selection and body composition assessment on computed tomography. Scientific Reports, 2021, vol. 11, no. 1, p. 21656. https://doi.org/10.1038/s41598-021-00161-5

Zwanenburg A., Leger S., Vallieres M., Löck S. Image biomarker standardisation initiative. arXiv preprint, arXiv: 1612.07003. 2016.

Löfstedt T., Brynolfsson P., Asklund T., Nyholm T., Garpebring A. Gray-level invariant Haralick texture features. PLoS One, 2019, vol. 14, no. 2, p. e0212110. https://doi.org/10.1371/journal.pone.0212110

Published

2024-10-31

How to Cite

Schmidt, I. A., & Kotina, E. D. (2024). Applying radiomics in computed tomography data analysis to predict sarcopenia. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 20(3), 376–390. https://doi.org/10.21638/spbu10.2024.306

Issue

Section

Applied Mathematics