Continual approximation of the nanocantilever stain energy

Authors

  • Anatoli O. Bochkarev St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation
  • Andrey V. Orekhov St. Petersburg State University, 7–9, Universitetskaya nab., St. Petersburg, 199034, Russian Federation https://orcid.org/0000-0001-7641-956X

DOI:

https://doi.org/10.21638/spbu10.2025.101

Abstract

Unlike macromechanics, the elastic characteristics of nanoobjects cease to be constants in the usual sense, as volume-averaged coefficients of the constitutive relationships, and become dependent on its size. Therefore, these elastic moduli are called effective. An important aspect of continual nanomechanics is that these moduli are problematic to measure in a classical way, for example, on a nanostand. Instead, they resort to various types of atomistic modeling, in particular the simulation of nanocantilever bending under the absolute displacement of its free edge. As a result, using solid state physics, the displacement of its atoms and the energy change are determined. Verification of the obtained experimental data is important and is a necessary stage for their adequate mathematical description. In this work, the problem of continual description of the bending energy of a nanorod and of its deflection is considered taking into account surface elasticity. Experimental data on nanocantilever bending are approximated in two classes of transcendental functions and a cubic polynomial. The approximation error is estimated and the integral of the functional part of the potential energy of deformation is calculated.

Keywords:

nanocantilerver, surface elasticity, bending energy, effective elastic moduli

Downloads

Download data is not yet available.
 

References

Литература

Gurtin M. E., Murdoch A. I. A continuum theory of elastic material surfaces // Archive for Rational Mechanics and Analysis. 1975. Vol. 57. P. 291–323.

Gurtin M. E., Murdoch A. I. Surface stress in solids // International Journal of Solids Structures. 1978. Vol. 14. P. 431–440.

Steigmann D. J., Ogden R. W. Plane deformations of elastic solids with intrinsic boundary elasticity // Proceedings of the Royal Society of London. Series A (Mathematical and Physical Sciences). 1997. Vol. 453. P. 853–977.

Steigmann D. J., Ogden R. W. Elastic surface-substrate interactions // Proceedings of the Royal Society of London. Series A (Mathematical and Physical Sciences). 1999. Vol. 455. P. 437–474.

Miller R. E., Shenoy V. B. Size effect elastic properties of nanosized structural elements // Nanotechnology. 2000. Vol. 11. P. 139–147.

Shenoy V. B. Atomistic calculations of elastic properties of metallic fcc crystal surfaces // Physical Review B. 2005. Vol. 71. Art. N 094104.

Chhapadia P., Mohammadi P., Sharma P. Curvature-dependent surface energy and implications for nanostructures // Journal of the Mechanics and Physics of Solids. 2011. Vol. 59. P. 2103–2115.

Chhapadia P., Mohammadi P., Sharma P. Erratum to: “Curvature-dependent surface energy and implications for nanostructures’’ // Journal of the Mechanics and Physics of Solids. 2012. Vol. 60. P. 1241–1242.

Nanocantilever Beams: Modeling, Fabrication, and Applications. Ed. I. Eds I. Voiculescu, M. Zaghloul. New York: Jenny Stanford Publ., 2016. 544 p.

Bochkarev A. Buckling of a nano-rod with taken into account of surface effect // Zeitschrift für Angewandte Mathematik und Mechanik. 2024. Vol. 104. N e202300738.

Кондратьева А. Д. Выпучивание под собственным весом нанокантилевера с упругим поворотом // Процессы управления и устойчивость. 2024. Т. 11. Вып. 27. С. 112–120.

Zhang G. I., Gao X. L., Guo Z. W. A new model for spatial rods incorporating surface energy effects // Mathematics and Mechanics of Solids. 2024. Vol. 29 (8). P. 1646–1666.

Невельсон М. Б., Хасьминский Р. З. Стохастическая аппроксимация и рекуррентное оценивание. М.: Наука, 1972. 304 с.

Robbins Н., Monro S. A stochastic approximation method // Annals of Mathematical Statistics. 1951. Vol. 22. N 1. P. 400–407.

Kroese D. P., Taimre T., Botev Z. I. Handbook of Monte Carlo methods. New York: John Wiley & Sons, 2011. 772 p.

Ермаков С. М. Метод Монте-Карло и смежные вопросы. М.: Наука, 1975. 472 с.


References

Gurtin M. E., Murdoch A. I. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 1975, vol. 57, pp. 291–323.

Gurtin M. E., Murdoch A. I. Surface stress in solids. International Journal of Solids Structures, 1978, vol. 14, pp. 431–440.

Steigmann D. J., Ogden R. W. Plane deformations of elastic solids with intrinsic boundary elasticity. Proceedings of the Royal Society of London, Series A (Mathematical and Physical Sciences), 1997, vol. 453, pp. 853–977.

Steigmann D. J., Ogden R. W. Elastic surface-substrate interactions. Proceedings of the Royal Society of London, Series A (Mathematical and Physical Sciences), 1999, vol. 455, pp. 437–474.

Miller R. E., Shenoy V. B. Size effect elastic properties of nanosized structural elements. Nanotechnology, 2000, vol. 11, pp. 139–147.

Shenoy V. B. Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Physical Review B, 2005, vol. 71, art. no. 094104.

Chhapadia P., Mohammadi P., Sharma P. Curvature-dependent surface energy and implications for nanostructures. Journal of the Mechanics and Physics of Solids, 2011, vol. 59, pp. 2103–2115.

Chhapadia P., Mohammadi P., Sharma P. Erratum to: “Curvature-dependent surface energy and implications for nanostructures’’. Journal of the Mechanics and Physics of Solids, 2012, vol. 60, pp. 1241–1242.

it Nanocantilever Beams: Modeling, Fabrication, and Applications. Ed. 1. Eds I. Voiculescu, M. Zaghloul. New York, Jenny Stanford Publ., 2016. 544 p.

Bochkarev A. Buckling of a nano-rod with taken into account of surface effect. Zeitschrift für Angewandte Mathematik und Mechanik, 2024, vol. 104, art. no. e202300738.

Kondratyeva A. D. Vypuchivanie pod sobstvennym vesom nanokantilevera s uprugim povorotom [Self-weight buckling of a nanocantilever on an elastic substrate]. Protsessy upravleniia i ustoichivost' [Control Processes and Stability], 2024, vol. 11 (27), pp. 112–120. (In Russian)

Zhang G. I., Gao X. L., Guo Z. W. A new model for spatial rods incorporating surface energy effects. Mathematics and Mechanics of Solids, 2024, vol. 29 (8), pp. 1646–1666.

Nevelson M. B., Khas'minskii R. Z. Stokhasticheskaia approksimatsiia i rekurrentnoe otsenivanie [ Stochastic approximation and recurrent estimation]. Moscow, Nauka Publ., 1972, 304 p. (In Russian)

Robbins Н., Monro S. A stochastic approximation method. Annals of Mathematical Statistics, 1951, vol. 22 (1), pp. 400–407.

Kroese D. P., Taimre T., Botev Z. I. Handbook of Monte Carlo methods. New York, John Wiley & Sons Publ., 2011, 772 p.

Ermakov S. M. Metod Monte-Karlo i smezhnye voprosy [ Monte Carlo method and related topics]. Moscow, Nauka Publ., 1975, 472 p. (In Russian)

Published

2025-05-29

How to Cite

Bochkarev, A. O., & Orekhov, A. V. (2025). Continual approximation of the nanocantilever stain energy. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 21(1), 5–15. https://doi.org/10.21638/spbu10.2025.101

Issue

Section

Applied Mathematics