Method for estimation effective parameters of field cathodes using high-precision multiparameter field emission equations

Authors

DOI:

https://doi.org/10.21638/spbu10.2025.104

Abstract

The paper presents a numerical method for estimation the effective parameters of field cathodes from their current-voltage characteristics using a high-precision multiparameter field emission equation, which includes the expansion of the special functions τ and ν to the sixth term, as well as the functional dependence of the emission area on the field. The method was demonstrated by the example of a nanocomposite cathode made of carbon nanotubes in a polymer matrix, as well as by the example of an emitter modeled in COMSOL. A comparison is made with other methods of analyzing current-voltage characteristics, such as FN-plot, MG-plot and KP-plot.

Keywords:

method of processing current-voltage characteristics, FN-plot, effective field enhancement factor, effective radius of curvature, high precision field emission equation, nanocomposite with carbon nanotubes

Downloads

Download data is not yet available.
 

References

Литература

Murphy E. L., Good R. H. Thermionic emission, field emission, and the transition region // Physical Rev. 1956. Vol. 102. P. 1464–1472. https://doi.org/10.1103/PhysRev.102.1464

Popov E. O., Kolosko A. G., Filippov S. V. Electrical field admissible values for the classical field emitter regime in the study of large area emitters // AIP Advances. 2019. Vol. 9. P. 015129-1–015129-10. https://doi.org/10.1063/1.5080439

Popov E. O., Kolosko A. G., Filippov S. V. A test for compliance with the cold field emission regime using the Elinson — Schrednik and Forbes — Deane approximations (Murphy — Good Plot) // Technical Physics Letters. 2020. Vol. 46. P. 838–842. https://doi.org/10.1134/S1063785020090096

Liu H., Kato S., Saito Y. Empirical expression for the emission site density of nanotube film emitters // Journal of Vacuum Science Technology B. 2009. Vol. 27. P. 2435-1–2435-6. https://doi.org/10.1088/0957-4484/20/27/275206

Eлинсон M. И. Ненакаливаемые катоды. М.: Сов. радио, 1974. 336 с.

Spindt C. A., Brodie I., Humphrey L., Westerberg E. R. Physical properties of thinfilm field emission cathodes with molybdenum cones // Journal of Appl. Physics. 1976. Vol. 47. N 12. P. 5248–5263. https://doi.org/10.1063/1.322600

Forbes R. G. Use of Millikan — Lauritsen plots, rather than Fowler — Nordheim plots, to analyze field emission current-voltage data // Journal of Appl. Physics. 2009. Vol. 105. N 11. P. 114313-1–114313-18. https://doi.org/10.1063/1.3140602

Gotoh Y., Mukai K., Kawamura Y., Tsuji H., Ishikawa J. Work function of low index crystal facet of tungsten evaluated by the Seppen — Katamuki analysis // Journal of Vacuum Science Technology B. 2007. Vol. 25. N 2. P. 508–512. https://doi.org/10.1116/1.2433950

Gotoh Y., Nagao M., Matsubara М., Inoue К., Tsuji Н., Ishikawa J. Relationship between effective work functions and noise powers of emission currents in nickel-deposited field emitters // Journal of Appl. Physics. 1996. Vol. 35. P. L1297–L1300. https://doi.org/10.1143/JJAP.35.L1297

Forbes R. G., Deane J. H. B. Reformulation of the standard theory of Fowler — Nordheim tunnelling and cold field electron emission // Proc. R. Soc. London. Series A. 2007. Vol. 463. P. 2907–2927. https://doi.org/10.1098/rspa.2007.0030

Forbes R. G. Improved methods of extracting area-like information from CFE current-voltage data // International Vacuum Nanoelect. Conference (28th IVNC). Guangzhou, China. 2015. P. 70–71. https://doi.org/10.1109/IVNC.2015.7225536

Popov E. O., Filippov S. V., Kolosko A. G. Processing of experimental current-voltage characteristics of single tip emitters taking into account the functional dependence of the emission area on the applied voltage // Journal of Vacuum Science Technology B. 2023. Vol. 41. N 1. P. 012801-1–012801-7. https://doi.org/10.1116/6.0002305

Forbes R. G., Popov E. O., Kolosko A. G., Filippov S. V. The pre-exponential voltage-exponent as a sensitive test parameter for field emission theories // R. Soc. Open Sci. 2021. Vol. 8. N 3. P. 201986-1–201986-19. https://doi.org/10.1098/rsos.201986

Фунг Д. М., Шешин Е. П. Автоэмиссионные характеристики и структура углеродсодержащих катодных материалов // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2024. T. 20. Вып. 2. С. 193–205. https://doi.org/10.21638/spbu10.2024.205

Gaertner G., Knapp W., Forbes R. G. (Eds.). Modern developments in vacuum electron sources. Berlin; Heidelberg: Springer, 2020. 597 p. https://doi.org/10.1007/978-3-030-47291-7

Popov E. O., Kolosko A. G., Filippov S. V., Terukov E. I., Ryazanov R. M., Kitsyuk E. P. Comparison of macroscopic and microscopic emission characteristics of large area field emitters based on carbon nanotubes and graphene // Journal of Vacuum Science Technology B. 2020. Vol. 38. N 4. P. 043203-1–043203-10. https://doi.org/10.1116/6.0000072

Gao R., Pan Z., Wang Z. Work function at the tips of multiwalled carbon nanotubes // Appl. Physics Letters. 2001. Vol. 78. P. 1757–1759. https://doi.org/10.1063/1.1356442

Попов Е. О., Колосько А. Г., Чумак М. А., Филиппов С. В. Десять способов определения площади полевой эмиссии // Журнал технической физики. 2019. T. 89. № 10. С. 1615–1625. https://doi.org/10.21883/JTF.2019.10.48182.2624


References

Murphy E. L., Good R. H. Thei-inionic emission, field emission, and the transition region. Physical Rev., 1956, vol. 102, pp. 1464–1472. https://doi.org/10.1103/PhysRev.102.1464

Popov E. O., Kolosko A. G., Filippov S. V. Electrical field admissible values for the classical field emitter regime in the study of large area emitters. AIP Advances, 2019, vol. 9, pp. 015129-1–015129-10. https://doi.org/10.1063/1.5080439

Popov E. O., Kolosko A. G., Filippov S. V. A test for compliance with the cold field emission regime using the Elinson — Schrednik and Forbes — Deane approximations (Murphy — Good Plot). Technical Physics Letters, 2020, vol. 46, pp. 838–842. https://doi.org/10.1134/S1063785020090096

Liu H., Kato S., Saito Y. Empirical expression for the emission site density of nanotube film emitters. Journal of Vacuum Science Technology B, 2009, vol. 27, pp. 2435-1–2435-6. https://doi.org/10.1088/0957-4484/20/27/275206

Elinson M. I. Nenakalivaemye katody [ Field emission cathodes]. Moscow, Sov. Radio Publ., 1974, 336 p. (In Russian)

Spindt C. A., Brodie I., Humphrey L., Westerberg E. R. Physical properties of thinfilm field emission cathodes with molybdenum cones. Journal of Appl. Physics, 1976, vol. 47, no. 12, pp. 5248–5263. https://doi.org/10.1063/1.322600

Forbes R. G. Use of Millikan — Lauritsen plots, rather than Fowler — Nordheim plots, to analyze field emission current-voltage data. Journal of Appl. Physics, 2009, vol. 105, no. 11, pp. 114313-1–114313-8. https://doi.org/10.1063/1.3140602

Gotoh Y., Mukai K., Kawamura Y., Tsuji H., Ishikawa J. Work function of low index crystal facet of tungsten evaluated by the Seppen — Katamuki analysis. Journal of Vacuum Science Technology B, 2007, vol. 25, no. 2, pp. 508–512. https://doi.org/10.1116/1.2433950

Gotoh Y., Nagao M., Matsubara М., Inoue К., Tsuji Н., Ishikawa J. Relationship between effective work functions and noise powers of emission currents in nickel-deposited field emitters. Journal of Appl. Physics, 1996, vol. 35, pp. L1297–L1300. https://doi.org/10.1143/JJAP.35.L1297

Forbes R. G., Deane J. H. B. Reformulation of the standard theory of Fowler — Nordheim tunnelling and cold field electron emission. Proc. R. Soc. London. Series A, 2007, vol. 463, pp. 2907–2927. https://doi.org/10.1098/rspa.2007.0030

Forbes R. G. Improved methods of extracting area-like information from CFE current-voltage data. International Vacuum Nanoelect. Conference (28th IVNC). Guangzhou, China, 2015, pp. 70–71. https://doi.org/10.1109/IVNC.2015.7225536

Popov E. O., Filippov S. V., Kolosko A. G. Processing of experimental current-voltage characteristics of single tip emitters taking into account the functional dependence of the emission area on the applied voltage. Journal of Vacuum Science Technology B, 2023, vol. 41, no. 1, pp. 012801-1–012801-7. https://doi.org/10.1116/6.0002305

Forbes R. G., Popov E. O., Kolosko A. G., Filippov S. V. The pre-exponential voltage-exponent as a sensitive test parameter for field emission theories. R. Soc. Open Sci., 2021, vol. 8, no. 3, pp. 201986-1–201986-19. https://doi.org/10.1098/rsos.201986

Phung D. M., Sheshin E. P. Avtoemissionnye kharakteristiki i struktura uglerodsoderzhashchikh katodnykh materialov [Field emission characteristics and structure of carbon-containing cathode materials]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2024, vol. 20, iss. 2, pp. 193–205. https://doi.org/10.21638/spbu10.2024.205 (In Russian)

Gaertner G., Knapp W., Forbes R. G. (Eds) Modern Developments in Vacuum Electron Sources. Berlin, Heidelberg, Springer, 2020, 597 p. https://doi.org/10.1007/978-3-030-47291-7

Popov E. O., Kolosko A. G., Filippov S. V., Terukov E. I., Ryazanov R. M., Kitsyuk E. P. Comparison of macroscopic and microscopic emission characteristics of large area field emitters based on carbon nanotubes and graphene. Journal of Vacuum Science Technology B, 2020, vol. 38, no. 4. pp. 043203-1–043203-10. https://doi.org/10.1116/6.0000072

Gao R., Pan Z., Wang Z. Work function at the tips of multiwalled carbon nanotubes. Appl. Physics Letters, 2001, vol. 78, pp. 1757–1759. https://doi.org/10.1063/1.1356442

Popov E. O., Kolos'ko A. G., Chumak M. A., Filippov S. V. Desiat' sposobov opredeleniia ploshchadi polevoi emissii [Ten Approaches to Define the Field Emission Area]. Zhurnal tekhnicheskoi fiziki [ Technical Physics], 2019, vol. 89, no. 10, pp. 1615–1625. https://doi.org/10.21883/JTF.2019.10.48182.2624 (In Russian)

Published

2025-05-29

How to Cite

Kolosko, A. G., Popov, E. O., & Filippov, S. V. (2025). Method for estimation effective parameters of field cathodes using high-precision multiparameter field emission equations. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 21(1), 47–57. https://doi.org/10.21638/spbu10.2025.104

Issue

Section

Applied Mathematics