Numerical calculation of integrals in the density functional theory in the electron gas approximation using CUDA technology
DOI:
https://doi.org/10.21638/spbu10.2024.303Abstract
The expression for the potential energy of interaction of two neutral atoms in the absence of a chemical bond consists of the sum of multiple and improper integrals. Due to the cumbersome nature of the functions, finding these integrals in explicit form is not possible. Software systems widely used in practice based on standard methods of computational mathematics are also not capable of providing satisfactory accuracy in their numerical calculations in a short time. In quantum chemistry and computational physics, the above greatly limits approaches to modeling the properties and structures of atomic/molecular systems. You have to rely on Monte-Carlo integration methods or formulas of the Gauss — Laguerre type, which are not so effective in terms of accuracy. In this article, in relation to this problem, we propose a method for transferring Newton — Cotes quadrature formulas to the architecture of graphic processors. The features of such a transfer are discussed in detail, designed to eliminate bottlenecks and maximize the performance of the corresponding calculation programs. The platform for massively parallel computing is CUDA technology from NVIDIA. Testing has shown that in typical tasks, the efficiency of programs for GPUs based on parallel analogues is on average an order of magnitude higher than classical ones. Within the framework of the proposed approach, it was possible to calculate interatomic interaction potentials in a wide range of changes in distances between atoms with high accuracy and in an acceptable computer time, as well as determine the equilibrium interaction parameters. the results obtained are in good agreement with the data known from the literature.
Keywords:
parallel programming, numerical integration, CUDA technology, GPGPU, density functional theory
Downloads
References
Бахвалов Н. С., Жидков Н. П., Кобельков Г. М. Численные методы. М.: Наука, 1987. 600 с.
Калиткин Н. Н. Численные методы. М.: Наука, 1978. 512 с.
Жидков Е. П., Лобанов Ю. Ю., Рушай В. Д. Применение метода Ромберга для повышения точности вычисления кратных интегралов // Журнал вычислительной математики и математической физики. 2009. Т. 49. № 2. С. 232–240.
Рыбаков К. А. Точное вычисление погрешности аппроксимации кратных стохастических интегралов Ито // Сибирский журнал вычислительной математики. 2023. Т. 26. № 2. С. 205–213. https://doi.org/10.15372/SJNM20230207
Выжол Ю. А., Жорова А. Н., Муленко И. А., Хомкин А. Л. Применение методов компьютерной алгебры к расчету скобочных интегралов // Журнал вычислительной математики и математической физики. 2011. Т. 51. № 10. С. 1867–1882.
Galan-Garcia J. L., Rodriguez-Cielos P., Padilla-Dominguez Y., Galan-Garcia M. A., Atencia I., Rodriguez-Padilla P., Aguilera-Venegas G. SMIS: A stepwise multiple integration solver using a CAS // Mathematics. 2021. Vol. 9. N 22. P. 1–32. https://doi.org/10.3390/math9222866
Chernukha O., Bilushchak Y., Shakhovska N., Kulhanek R. A numerical method for computing double integrals with variable upper limits // Mathematics. 2022. Vol. 10. N 1. P. 1–26. https://doi.org/10.3390/math10010108
Горкуша О. А., Заводинский В. Г. О вычислении потенциала в многоатомных системах // Журнал вычислительной математики и математической физики. 2019. Т. 59. № 2. С. 325–333. https://doi.org/10.1134/S0044466919020066
Крутицкий П. А., Резниченко И. О. Улучшенная квадратурная формула для потенциала простого слоя // Журнал вычислительной математики и математической физики. 2023. Т. 63. № 2. С. 230–244. https://doi.org/10.31857/S0044466923020114
Соболь И. М. Многомерные квадратурные формулы и функции Хаара. М.: Наука, 1969. 288 с.
Раба Н. О. Разработка и реализация алгоритма расчета коагуляции в модели облаков со смешанной фазой с использованием технологии CUDA // Вестник Санкт-Петербургского университета. Сер. 10. Прикладная математика. Информатика. Процессы управления. 2011. Вып. 4. C. 94–104.
Fazanaro F. I., Soriano D. C., Suyama R., Madrid M. K., Oliveira J. R., Munoz I. B., Attux R. Numerical characterization of nonlinear dynamical systems using parallel computing: The role of GPUs approach // Communications in Nonlinear Science and Numerical Simulation. 2016. Vol. 37. P. 143–162. https://doi.org/10.1016/j.cnsns.2015.12.021
Ружников В. О. Повышение производительности расчета динамики частиц на параллельных системах // Вестник Санкт-Петербургского университета. Сер. 10. Прикладная математика. Информатика. Процессы управления. 2014. Вып. 1. C. 147–156.
Gordon R. G., Kim Y. S. Theory for the forces between closed-shell atoms and molecules // Journal of Chemical Physics. 1972. Vol. 56. N 6. P. 3122–3133. https://doi.org/10.1063/1.1677649
Waldman M., Gordon R. G. Scaled electron gas approximation for intermolecular forces // Journal of Chemical Physics. 1979. Vol. 71. N 3. P. 1325–1339. https://doi.org/10.1063/1.438433
Vol. 40. N 6. P. 1686–1691. https://doi.org/10.1063/1.1725380
Крылов В. И. Приближенное вычисление интегралов. М.: Наука, 1967. 500 с.
Рит М. Наноконструирование в науке и технике. Введение в~мир нанорасчета. Ижевск: Регулярная и~хаотическая динамика, 2005. 160 с.
Боресков А.~В., Харламов А.~А. Основы работы с технологией CUDA. М.: ДМК Пресс, 2010. 232 с.
Сандерс Дж., Кэндрот Э. Технология CUDA в примерах. Введение в программирование графических процессоров. М.: ДМК Пресс, 2011. 232 с.
Gould T., Bucko T. C6 coefficients and dipole polarizabilities for all atoms and many ions in rows 1–6 of the periodic table // Journal of Chemical Theory and Computation. 2016. Vol. 12. N 8. P. 3603–3613. https://doi.org/10.1021/acs.jctc.6b00361
References
Bahvalov N. S., Zhidkov N. P., Kobel'kov G. M. Chislennye metody [Numerical methods]. Moscow, Nauka Publ., 1987, 600 p. (In Russian)
Kalitkin N. N. Chislennye metody [Numerical methods]. Moscow, Nauka Publ., 1978, 512 p. (In Russian)
Zhidkov E. P., Lobanov Iu. Iu., Rushai V. D. Primenenie metoda Romberga dlia povysheniia tochnosti vychisleniia kratnykh integralov [Improving the accuracy of multiple integral evaluation by applying Romberg's method]. Computational Mathematics and Mathematical Physics, 2009, vol. 49, no. 2, pp. 232–240. (In Russian)
Rybakov K. A. Tochnoe vychislenie pogreshnosti approksimatsii kratnykh stokhasticheskikh integralov Ito [Exact calculation of the approximation error of multiple Ito stochastic integrals]. Numerical Analysis and Applications, 2023, vol. 26, no. 2, pp. 205–213. https://doi.org/10.15372/SJNM20230207 (In Russian)
Vyzhol Iu. A., Zhorova A. N., Mulenko I. A., Khomkin A. L. Primenenie metodov komp'iuternoi algebry k raschetu skobochnykh integralov [Application of computer algebra for the calculation of bracket integrals]. Computational Mathematics and Mathematical Physics, 2011, vol. 51, no. 10, pp. 1867–1882. (In Russian)
Galan-Garcia J. L., Rodriguez-Cielos P., Padilla-Dominguez Y., Galan-Garcia M. A., Atencia I., Rodriguez-Padilla P., Aguilera-Venegas G. SMIS: a stepwise multiple integration solver using a CAS. Mathematics, 2021, vol. 9, no. 22, pp. 1–32. https://doi.org/10.3390/math9222866
Chernukha O., Bilushchak Y., Shakhovska N., Kulhanek R. A numerical method for computing double integrals with variable upper limits. Mathematics, 2022, vol. 10, no. 1, pp. 1–26. https://doi.org/10.3390/math10010108
Gorkusha O. A., Zavodinskii V. G. O vychislenii potentsiala v mnogoatomnykh sistemakh [On the calculation of the interaction potential in multiatomic systems]. Computational Mathematics and Mathematical Physics, 2019, vol. 59, no. 2, pp. 325–333. https://doi.org/10.1134/S0044466919020066 (In Russian)
Krutitskii P. A., Reznichenko I. O. Uluchshennaia kvadraturnaia formula dlia potentsiala prostogo sloia [Improved quadrature formula for a single-layer potential]. Computational Mathematics and Mathematical Physics, 2023, vol. 63, no. 2, pp. 230–244. https://doi.org/10.31857/S0044466923020114 (In Russian)
Sobol' I. M. Mnogomernye kvadraturnye formuly i funktsii Khaara [Multidimensional quadrature formulas and Haar functions]. Moscow, Nauka Publ., 1969, 288 p. (In Russian)
Raba N. O. Razrabotka i realizatsiia algoritma rascheta koaguliatsii v modeli oblakov so smeshannoi fazoi s ispol'zovaniem tekhnologii CUDA [Development and realization of algorithm of coagulation calculation in mixed-phase cloud model using CUDA technology]. Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2011, iss. 4, pp. 94–104. (In Russian)
Fazanaro F. I., Soriano D. C., Suyama R., Madrid M. K., Oliveira J. R., Munoz I. B., Attux R. Numerical characterization of nonlinear dynamical systems using parallel computing: The role of GPUs approach. Communications in Nonlinear Science and Numerical Simulation, 2016, vol. 37, pp. 143–162. https://doi.org/10.1016/j.cnsns.2015.12.021
Ruzhnikov V. O. Povyshenie proizvoditel'nosti rascheta dinamiki chastits na parallel'nykh sistemakh [Calculation performance improvement of particle dynamics on parallel systems]. Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2014, iss. 1, pp. 147–156. (In Russian)
Gordon R. G., Kim Y. S. Theory for the forces between closed-shell atoms and molecules. Journal of Chemical Physics, 1972, vol. 56, no. 6, pp. 3122–3133. https://doi.org/10.1063/1.1677649
Waldman M., Gordon R. G. Scaled electron gas approximation for intermolecular forces. Journal of Chemical Physics, 1979, vol. 71, no. 3, pp. 1325–1339. https://doi.org/10.1063/1.438433
Strand G., Bonham R. A. Analytical expressions for the Hartree — Fock potential of neutral atoms and for the corresponding scattering factors for X rays and electrons. Journal of Chemical Physics, 1964, vol. 40, no. 6, pp. 1686–1691. https://doi.org/10.1063/1.1725380
Krylov V. I. Priblizhennoe vychislenie integralov [Approximate calculation of integrals]. Moscow, Nauka Publ., 1967, 500 p. (In Russian)
Rit M. Nanokonstruirovanie v nauke i tekhnike. Vvedenie v mir nanorascheta [Nano-engineering in science and technology: an introduction to the world of nano-design]. Izhevsk, Reguliarnaia i khaoticheskaia dinamika Publ., 2005, 160 p. (In Russian)
Boreskov A. V., Kharlamov A. A. Osnovy raboty s tekhnologiei CUDA [Basics of working with CUDA technology]. Moscow, DMK Press, 2010, 232 p. (In Russian)
Sanders Dzh., Kendrot E. Tekhnologiia CUDA v primerakh. Vvedenie v programmirovanie graficheskikh protsessorov [CUDA technology in examples. Introduction to GPU programming]. Moscow, DMK Press, 2011, 232 p. (In Russian)
Gould T., Bucko T. C6 coefficients and dipole polarizabilities for all atoms and many ions in rows 1–6 of the periodic table. Journal of Chemical Theory and Computation, 2016, vol. 12, no. 8, pp. 3603–3613. https://doi.org/10.1021/acs.jctc.6b00361
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.