Nonlinear impulsive Hahn — Sturm — Liouville problems on the whole line
DOI:
https://doi.org/10.21638/spbu10.2024.406Abstract
Impulsive Hahn — Sturm — Liouville problems in singular cases are discussed. The existence of solutions of such equations on the whole axis and in the case of Weyl’s limit-circle has been investigated. First, we construct the corresponding Green’s function. This boundary-value problem is thus reduced to a fixed point problem. Later, we demonstrate the existence and uniqueness of the solutions to this problem by using the traditional Banach fixed point theorem. Finally, we derive an existence theorem without considering the solution’s uniqueness. We apply the well-known Schauder fixed point to obtain this result.
Keywords:
Hahn difference equations, singular nonlinear problems, boundary-value problems with impulses
Downloads
References
References
Amirov R. Kh., Ozkan A. S. Discontinuous Sturm — Liouville problems with eigenvalue dependent boundary condition. Mathematical Physics, Analysis and Geometry, 2014, vol. 17, no. 3–4, pp. 483–491.
Aydemir K., Olugar H., Mukhtarov O. Sh. The principal eigenvalue and the principal eigenfunction of a boundary-value-transmission problem. Turkish Journal of Mathematics and Computer Science, 2019, vol. 11, no. 2, pp. 97–100.
Aydemir K., Olgar H., Mukhtarov O. Sh., Muhtarov F. Differential operator equations with interface conditions in modified direct sum spaces. Filomat, 2018, vol. 32, no. 3, pp. 921–931.
Aygar Y., Bairamov E. Scattering theory of impulsive Sturm — Liouville equation in quantum calculus. Bulletin of the Malaysian Mathematical Sciences Society, 2019, vol. 42, pp. 3247–3259.
Bohner M., Cebesoy S. Spectral analysis of an impulsive quantum difference operator. Mathematical Methods in the Applied Sciences, 2019, vol. 42, pp. 5331–5339.
Guldu Y., Amirov R. Kh., Topsakal N. On impulsive Sturm — Liouville operators with singularity and spectral parameter in boundary conditions. Ukrainian Mathematical Journal, 2013, vol. 64, no. 12, pp. 1816–1838.
Karahan D., Mamedov Kh. R. On a q-boundary value problem with discontinuity conditions. Vestnik of South Ural State University. Series Mathematics. Mechanics. Physics, 2021, vol. 13, no. 4, pp. 5–12.
Karahan D., Mamedov Kh. R. On a q-analogue of the Sturm — Liouville operator with discontinuity conditions. Vestnik of Samara State Technical University. Series Mathematics and Physics Sciences, 2022, vol. 26, no. 3, pp. 407–418.
Karahan D., Mamedov Kh. R. Sampling theory associated with q-Sturm — Liouville operator with discontinuity conditions. Journal of Contemporary Applied Mathematics, 2020, vol. 10, no. 2, pp. 40–48.
Mukhtarov O., Olugar H., Aydemir K. Eigenvalue problems with interface conditions. Konuralp Journal of Mathematics, 2020, vol. 8, no. 2, pp. 284–286.
Palamut Kosar N. On a spectral theory of singular Hahn difference equation of a Sturm — Liouville type problem with transmission conditions. Mathematical Methods in the Applied Sciences, 2023, vol. 46, no. 9, pp. 11099–11111.
Annaby M. H., Hamza A. E., Makharesh S. D. A Sturm — Liouville theory for Hahn difference operator. Frontiers of Orthogonal Polynomials and q-series. Eds.: Xin Li, Zuhair Nashed. Singapore, World Scientific Publ., 2018, pp. 35–84.
Hahn W. Beiträge zür Theorie der Heineschen Reihen. Mathematische Nachrichten, 1949, vol. 2, pp. 340–379.
Annaby M. H., Hamza A. E., Aldwoah K. A. Hahn difference operator and associated Jackson — Nörlund integrals. Journal of Optimization Theory and Applications, 2012, vol. 154, pp. 133–153.
Hahn W. Ein Beiträge zür Theorie der Orthogonalpolynome. Monatshefte für Mathematik, 1983, vol. 95, pp. 19–24.
Allahverdiev B. P., Tuna H. Nonlinear singular Hahn — Sturm — Liouville problems on [ω0, ∞). Gulf Journal of Mathematics, 2023, vol. 14, no. 1, pp. 1–12.
Allahverdiev B. P., Tuna H. Nonlinear Hahn — Sturm — Liouville problems on infinite intervals. Uzbek. Mathematical Journal, 2022, vol. 66, no. 2, pp. 10–21.
Guseinov G. Sh., Yaslan I. Boundary value problems for second order nonlinear differential equations on infinite intervals. Journal of Mathematical Analysis and Applications, 2004, vol. 290, pp. 620–638.
Krasnosel'skii M. A. Topologicheskie metody v teorii nelineinykh integral'nykh uravnenii [ Topological methods in the theory of nonlinear integral equations]. Moscow, Gostekhteoretizdat Publ., 1956, 392 p. (English transl.: New York, Pergamon Press, 1964, 406 p.)
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.