The non-classical optimality condition in the hybrid control problem of hyperbolic and ordinary differential equations with delay

Authors

DOI:

https://doi.org/10.21638/spbu10.2024.210

Abstract

In this paper, we consider an optimal control problem for a system of linear first-order hyperbolic equations in which the inhomogeneity in the right-hand side is determined from the controlled linear system of ordinary differential equations with constant delay. The coefficient matrix at phase variables in the system of ordinary differential equations depends on the control function. The cost functional is linear. On the basis of the exact increment formula (without remainder terms) of the cost functional, the problem is reduced to the optimal control problem of a system of ordinary differential equations. The result is formulated in the form of a non-classical variational optimality condition. The proposed problem reduction significantly reduces the amount of calculations when using numerical optimization methods. An illustrative example is given.

Keywords:

hybrid problem, hyperbolic system, delayed system, exact increment formula, variational optimality condition, problem reduction

Downloads

Download data is not yet available.
 

References

Литература

Teo K. Optimal control of systems governed by time-delayed, second-order, linear, parabolic partial differential equations with a first boundary condition // Journal of Optimization Theory and Applications. 1979. Vol. 29. N 3. P. 437–481.

Sadek I. Optimal control of time-delay systems with distributed parameter // Journal of Optimization Theory and Applications. 1990. Vol. 67. N 3. P. 567–585.

Mai T., Nguyen H., Nguyen V., Vu V. Applying Pade approximation model in optimal control problem for a distributed parameter system with time delay // International Journal of Computing and Optimization. 2017. Vol. 4. N 1. P. 19–30. https://doi.org/10.12988/ijco.2017.61227

Провоторов В. В., Провоторова Е. Н. Синтез оптимального граничного управления параболической системы с запаздыванием и распределенными параметрами на графе // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2017. Т. 13. Вып. 2. C. 209–224. https://doi.org/10.21638/11701/spbu10.2017.207

Liu D., Wang Q., Xu G. Stabilization of distributed parameter systems with delays in the boundary based on predictors // IEEE Transactions on Automatic Control. 2021. Vol. 66. N 7. P. 3317–3324. https://doi.org/10.1109/TAC.2020.3035586

Гребенщиков Б. Г. Асимптотические свойства и стабилизация одной системы нейтрального типа с постоянным запаздыванием // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2021. Т. 17. Вып. 1. C. 81–96. https://doi.org/10.21638/11701/spbu10.2021.108

Furtat I., Orlov Yy. Synchronization and state estimation of nonlinear systems with unknown time-delays: Adaptive identification method // Cybernetics and Physics. 2020. Vol. 9. N 3. P. 136–143. https://doi.org/10.35470/2226-4116-2020-9-3-136-143

Алексеев В. В., Крышев И. И., Сазыкина Т. Г. Физическое и математическое моделирование экосистем. СПб.: Гидрометеоиздат, 1992. 368 c.

Аргучинцев А. В. Оптимальное управление гиперболическими системами. М.: Физматлит, 2007. 186 с.

Рождественский Б. Л., Яненко Н. Н. Системы квазилинейных уравнений и их приложения к газовой динамике. М.: Наука, 1978. 592 с.

Срочко В. А., Аксенюшкина Е. В. Параметризация некоторых задач управления линейными системами // Известия Иркутского государственного университета. Сер. Математика. 2019. Т. 30. С. 83–98. https://doi.org/10.26516/1997-7670.2019.30.83

Аргучинцев А. В. Вариационное условие оптимальности в задаче минимизации нормы конечного состояния составной системой гиперболических и обыкновенных дифференциальных уравнений // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2023. Т. 19. Вып. 4. C. 540–548. https://doi.org/10.21638/11701/spbu10.2023.410.


References

Teo K. Optimal control of systems governed by time-delayed, second-order, linear, parabolic partial differential equations with a first boundary condition. Journal of Optimization Theory and Applications, 1979, vol. 29, no. 3, pp. 437–481.

Sadek I. Optimal control of time-delay systems with distributed parameter. Journal of Optimization Theory and Applications, 1990, vol. 67, no. 3, pp. 567–585.

Mai T., Nguyen H., Nguyen V., Vu V. Applying Pade approximation model in optimal control problem for a distributed parameter system with time delay. International Journal of Computing and Optimization, 2017, vol. 4, no. 1, pp. 19–30. https://doi.org/10.12988/ijco.2017.61227

Provotorov V. V., Provotorova E. N. Sintez optimal'nogo granichnogo upravleniia parabolicheskoii sistemi s zapazdyvaniem i raspredelennymi parametrami na grafe [Synthesis of optimal boundary control of parabolic systems with delay and distributed parameters on the graph]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2017, vol. 13, iss. 2, pp. 209–224. https://doi.org/10.21638/11701/spbu10.2017.207 (In Russian)

Liu D., Wang Q., Xu G. Stabilization of distributed parameter systems with delays in the boundary based on predictors. IEEE Transactions on Automatic Control, 2021, vol. 66, no 7, pp. 3317–3324. https://doi.org/10.1109/TAC.2020.3035586

Grebenshchikov B. G. Asimptoticheskie svoistva i stabilizaciya odnoi sistemy neitral'nogo tipa s postoyannym zapazdyvaniem [Asymptotic properties and stabilization of a neutral type system with constant delay]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2021, vol. 17, iss. 1, pp. 81–96. https://doi.org/10.21638/11701/spbu10.2021.108 (In Russian)

Furtat I., Orlov Y. Synchronization and state estimation of nonlinear systems with unknown time-delays: adaptive identification method. Cybernetics and Physics, 2020, vol. 9, no. 3, pp. 136–143. https://doi.org/10.35470/2226-4116-2020-9-3-136-143

Alekseev V. V., Kryshev I. I., Sazykina T. G. Fizicheskoe i matematicheskoe modelirovanie ehkosistem [Physical and mathematical modeling of ecosystems]. St. Petersburg, Hydrometeoizdat Publ., 1992, 368 p. (In Russian)

Arguchintsev A. V. Optimalnoe upravlenie giperbolicheskimi sistemami [Optimal control of hyperbolic systems]. Moscow, Fizmatlit Publ., 2007, 186 p. (In Russian)

Rozhdestvenskiyi B. L., Yanenko N. N. Systemi kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike [ Systems of quasilinear equations and their applications to gas dynamics]. Moscow, Nauka Publ., 1978, 592 p. (In Russian)

Srochko V. A., Aksenyushkina E. V. Parametrizatsiya nekotorykh zadach upravleniya lineynymi sistemami [Parameterization of some linear systems control problems]. The Bulletin of Irkutsk State University. Series Mathematics, 2019, vol. 30, pp. 83–98. https://doi.org/10.26516/1997-7670.2019.30.83 (In Russian)

Arguchintsev A. V. Variacionnoe uslovie optimalnosti v zadache minimizacii normy konechnogo sostoyaniia sostavnoi sistemoi giperbolicheskikh i obyknovennykh differencialnykh uravnenii [The variational optimality condition in the problem of minimizing the finite state norm by a composite system of hyperbolic and ordinary differential equations]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2023, vol. 19, iss. 4, pp. 540–548. https://doi.org/10.21638/11701/spbu10.2023.410 (In Russian)

Published

2024-07-08

How to Cite

Arguchintsev, A. V., & Poplevko, V. P. (2024). The non-classical optimality condition in the hybrid control problem of hyperbolic and ordinary differential equations with delay. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 20(2), 255–264. https://doi.org/10.21638/spbu10.2024.210

Issue

Section

Control Processes