The methods to solve some classes boundary value problems via the results in double controlled metric-like spaces

Authors

  • Nizar Souayah King Saud University, P. Box 145111, Riyadh, 4545, Saudi Arabia; University of Tunis, 92, Boulevard du 9 Avril 1938, Tunis, 1938-1007, Tunisia https://orcid.org/0000-0001-8245-445X
  • Zoran D. Mitrović University of Banja Luka, 1A, Bulevar vojvode Petra Bojovica, Banja Luka, 78000, Bosnia and Herzegovina https://orcid.org/0000-0001-9993-9082

DOI:

https://doi.org/10.21638/spbu10.2025.105

Abstract

In this paper, we present some methods to solve second-order and fourth-order boundary value problems. First, we start by proving some new fixed point theorems in double controlled metric-like space. Further, we introduce the notion of Gζ-contraction in the same space endowed with a graph and obtain a result on fixed points for Gζ-contraction. As an application of the obtained results, we implemented the existence of solutions for some classes of second-order and fourth-order boundary value problems.

Keywords:

differential equations, fixed point, graph theory, double controlled metric-like spaces

Downloads

Download data is not yet available.
 

References


References

George R., Mitrović Z. D., Turab A., Savić A., Ali W. On a unique solution of a class of stochastic predator — prey models with two-choice behavior of predator animals. Symmetry, 2022, vol. 14, iss. 5, art. no. 846. https://doi.org/10.3390/sym14050846

Hui L., Jun Z., Cheng L. L. Application examples of the network fixed point theory for space-air-ground integrated communication network. International Congress on Ultra Modern Telecommunications and Control Systems (ICUMT). Moscow, Russia, 2010, pp. 989–993. https://doi.org/10.1109/ICUMT.2010.5676493

Shamanaev P. A. On the stability of the zero solution with respect to a part of variables in linear approximation. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2023, vol. 19, iss. 3, pp. 374–390. https://doi.org/10.21638/11701/spbu10.2023.306

Singh C. K., Prasad S. H., Balsara P. T. A fixed-point implementation for QR decomposition. 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software. Richardson, TX, USA, 2006, pp. 75–78. https://doi.org/10.1109/DCAS.2006.321037

Touail Y. Common fixed point results: New developments on commuting mappings and application in dynamic programming. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2024, vol. 20, iss. 3, pp. 366–375. https://doi.org/10.21638/spbu10.2024.305

Turab A., Mitrović Z. D., Savić A. Existence of solutions for a class of nonlinear boundary value problems on the hexasilinane graph. Advances in Difference Equations, 2021, no. 494, pp. 1–20.

Jung A. A fixed-point of view on gradient methods for big data. Frontiers in Applied Mathematics and Statistics, 2017, vol. 5, pp. 1–14. https://doi.org/10.3389/fams.2017.00018

Chu J., Torres P. J. Applications of Schauder's fixed point theorem to singular differential equations. Bulletin of the London Mathematical Society, 2007, vol. 39, pp. 653–660.

Faraji H., Mirkov M., Mitrović Z. D., Ramaswamy R., Abdelnaby O. A. A., Radenović S. Some new results for (α, β)-admissible mappings in F-metric spaces with applications to integral equations. Symmetry, 2022, vol. 14, art. no. 2429, pp. 1–13. https://doi.org/10.3390/sym14112429

Gupta V., Shatanawi W., Mani N. Fixed point theorems for (ψ, β)-Geraghty contraction type maps in ordered metric spaces and some applications to integral and ordinary differential equations. Journal of Fixed Point Theory and Applications, 2017, vol. 19, pp. 1251–1267. https://doi.org/10.1007/s11784-016-0303-2

Karami A., Abdullah S., Sedghi S., Mitrović Z. D. Solving existence problems via contractions in expanded b-metric spaces. The Journal of Analysis, 2022, vol. 30, no. 2, pp. 895–907.

Mani G., Gnanaprakasam A. J., Mitrović Z. D., Bota M.-F. Solving an integral equation via fuzzy triple controlled bipolar metric spaces. Mathematics, 2021, vol. 9, no. 3181, pp. 1–14. https://doi.org/10.3390/math9243181

Mebarki K., Boudaoui A., Shatanawi W., Abodayeh K., Shatnawi T. A. M. Solution of differential equations with infinite delay via coupled fixed point. Heliyon, 2022, vol. 8, iss. 2, pp. 2405–2440. https://doi.org/10.1016/j.heliyon.2022.e08849

Souayah N., Mlaiki N. A coincident point principle for two weakly compatible mappings in partial S-metric spaces. Journal of Nonlinear Science and Applications, 2016, vol. 9, pp. 2217–2223.

Souayah N., Mlaiki N., Haque S., Rizk D., Baazeem A. S., Shatanawi W. A new type of three dimensional metric spaces with applications to fractional differential equations. AIMS Mathematics, 2022, vol. 7, no. 10, pp. 17802–17814.

Caristi J. Fixed point theorems for mappings satisfying inwardness conditions. Transactions of the American Mathematical Society, 1976, vol. 215, pp. 241–251.

Fernandez J., Malviya N., Savić A., Paunović M., Mitrović Z. D. The extended cone b-metric-like spaces over Banach algebra and some applications. Mathematics, 2022, vol. 10, no. 149, pp. 1–11. https://doi.org/10.3390/math10010149

Gautam P., Sánchez R. L. M., Verma S. Fixed point of interpolative Rus — Reich — Ćirić contraction mapping on rectangular quasi-partial b-metric space. Symmetry, 2021, vol. 13, no. 32, pp. 1–8. https://doi.org/10.3390/sym13010032

George R., Mitrović Z. D., Radenović S. On some coupled fixed points of generalized T-contraction mappings in a bv(s)-metric space and its application. Axioms, 2020, vol. 9, no. 129, pp. 1–13. https://doi.org/10.3390/axioms9040129

George R., Belhenniche A., Benahmed S., Mitrović Z. D., Mlaiki N., Guran L. On an open question in controlled rectangular b-metric spaces. Mathematics, 2020, vol. 8, no. 2239, pp. 1–11. https://doi.org/10.3390/math8122239

Kiran Q., Alamgir N., Mlaiki N., Aydi H. On some new fixed point results in complete extended b-metric spaces. Mathematics, 2019, vol. 7, no. 5, art. no. 476, pp. 1–17. https://doi.org/10.3390/math7050476

Mlaiki N., Ozgur N. Y., Tacs N. New fixed-point theorems on an S-metric space via simulation functions. Mathematics, 2019, vol. 7, no. 7, art. no. 583, pp. 1–13. https://doi.org/10.3390/math7070583

Mudhesh M., Mlaiki N., Arshad M., Hussain A., Ameer E., George R., Shatanawi W. Novel results of α, ψ, X contraction multivalued mappings in F-metric spaces with an application. Journal of Inequalities and Applications, 2022, vol. 113, pp. 1–19. https://doi.org/10.1186/s13660-022-02842-9

Romaguera S., Tirado P. Characterizing complete fuzzy metric spaces via fixed point results. Mathematics, 2020, vol. 8, no. 273, pp. 1–7. https://doi.org/10.3390/math8020273

Shatanawi W. Common fixed point result for two self-maps in G-metric spaces. Matemativcki Vesnik, 2013, vol. 65, no. 2, pp. 143–150.

Souayah N., Mrad M. Some fixed point results on rectangular metric-like spaces endowed with a graph. Symmetry, 2019, vol. 11, no. 18, pp. 1–16. https://doi.org/10.3390/sym11010018

Abdeljawad T., Mlaiki N., Aydi H., Souayah N. Double controlled metric type spaces and some fixed point results. Mathematics, 2018, vol. 6, no. 320, pp. 1–10. https://doi.org/10.3390/math6120320

Mlaiki N. Double controlled metric-like spaces. Journal of Inequalities and Applications, 2020, vol. 189, pp. 1–12. https://doi.org/10.1186/s13660-020-02456-z

Samet B., Vetro C., Vetro P. Fixed point theorems for αψ-contractive-type mappings. Nonlinear Analysis, Theory Methods and Applications, 2012, vol. 75, pp. 2154–2165.

Jachymski J. The contraction principle for mappings on a metric space with a graph. Proceedings of the American Mathematical Society, 2008, vol. 136, pp. 1359–1373.

Jleli M., Samet B. A new generalization of the Banach contraction principle. Journal of Inequalities and Applications, 2014, no. 38, pp. 1–8. https://doi.org/10.1186/1029-242X-2014-38

Salimi P., Latif A., Hussain N. Modified αψ-contractive mappings with applications. Fixed Point Theory and Applications, 2013, no. 151, pp. 1–19. http://www.fixedpointtheoryandapplications.com/content/2013/1/151 (accessed: April 15, 2024).

Farajzadeh A. P., Kaewcharoen A., Plubtieng S. An application of fixed point theory to a nonlinear differential equation. Abstract and Applied Analysis, 2014, vol. 2014, art. ID 605405.

Souayah N., Mrad M., Mlaiki N. The GM-contraction principle for mappings on an M-metric spaces endowed with a graph and fixed point theorems. IEEE Access, 2018, vol. 6, pp. 25178–25184. https://doi.org/10.1109/ACCESS.2018.2833147

Karapi nar E., Khojasteh F., Mitrović Z. D. A proposal for revisiting Banach and Caristi type theorems in b-metric spaces. Mathematics, 2019, vol. 7, no. 308, pp. 1–4. https://doi.org/10.3390/math7040308

Downloads

Published

2025-05-29

How to Cite

Souayah, N., & Mitrović, Z. D. (2025). The methods to solve some classes boundary value problems via the results in double controlled metric-like spaces: . Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 21(1), 58–74. https://doi.org/10.21638/spbu10.2025.105

Issue

Section

Applied Mathematics