Quality criteria for control of epidemic process

Authors

  • Sergey E. Miheev St. Petersburg State University, 199034, St. Petersburg, Russian Federation
  • Vikenty S. Mikheev Kansas State University, 1228, av. Martin Luther King, Manhattan, KS 66506, USA

DOI:

https://doi.org/10.21638/11701/spbu10.2022.112

Abstract

The total number of those infected at the end of an epidemic and the maximum number of infected during an epidemic are considered as two quality criteria for control by delayed isolation of the SIR- and SIRS-type infections. The temporal Barabasi — Albert graph is used to model the contacts between individuals. Simulations are run to estimate optimal delays.

Keywords:

delayed isolation, SIR, SIRS, control of epidemics, temporal Barabasi — Albert graph, total number of infected, maximum number of infected, temporal network

Downloads

Download data is not yet available.
 

References

Stevens H. Why outbreaks like coronavirus spread exponentially, and how to “flatten the curve”. The Washington Post, March 14, 2020. Available at: https://www.washingtonpost.com/graphics/2020/world/corona-simulator/ (accessed: November 15, 2020).

Van der Hofstad R., Janssen A. J. E. M., van Leeuwaarden J.  S. H. Critical epidemics, random graphs and Brownian motion with a parabolic drift. Advances in Applied Probability. Cambridge, Cambridge University Press, 2010, pp. 1187–1206.

Smith D., Moore L. The SIR model for spread of disease — the differential equation model. MAA Publications, Mathematical Association of America Publ., 2004. Available at: https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model (accessed: November 15, 2020).

Kato F., Tainaka K., Sone S., Morita S., Iida H., Yoshimura J. Combined effects of prevention and quarantine on a breakout in SIR model. Scientific Reports, 2011, vol. 1, iss. 10, pp. 1–5.

Bo H., Yimin Z., Yongbin G., Guohui Z., Juan Z., Jin L., Li L. The analysis of isolation measures for epidemic control of COVID-19. Applied Intelligence, 2021, vol. 51, pp. 3074–3085.

Sokolov S. V., Sokolova A. L. HIV incidence in Russia: SIR epidemic model-based analysis. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Sciences. Control Processes, 2019, vol. 15, iss. 4, pp. 616–623. https://doi.org/10.21638/11701/spbu10.2019.416

Zakharov V. V., Balykina Yu. E., Balansovaya model' epidemii COVID-19 na osnove procentnogo prirosta [Balance model of the COVID-19 epidemic based on percentage growth]. Informatika i avtomatizaciya [ Informatics and Automation], 2021, vol. 20(5), pp. 1034–1064. https://doi.org/10.15622/20.5.2 (In Russian)

Sahneh F. D., Scoglio C. Epidemic spread in human networks. 2011 50th IEEE Conference on Decision and Control and European Control Conference. Orlando, Florida, USA, 2011, pp. 3008–3013.

Youssef M., Scoglio C. An individual-based approach to SIR epidemics in contact networks. J. of Theoretical Biology, 2011, vol. 283, pp. 136–144.

Pereira T., Young L. Control of epidemics on complex networks: Effectiveness of delayed isolation. Phys. Rev. E, 2015, vol. 92, iss. 2, pp. 022822(4).

Alvarez-Zuzek L. G., Stanley H. E., Braunstein L. A. Epidemic model with isolation in multilayer networks. Sci. Rep., 2015, vol. 5. https://doi.org/10.1038/srep12151

Albert R., Barabási A. Statistical mechanics of complex networks. Rev. Mod. Phys., 2002, vol. 74, iss. 1, pp. 47–97.

Holme P., Saramäki J. Temporal networks. Physics Reports, 2012, vol. 519, pp. 97–125.

Mikheev V. IsolationSIRonBarabasi. GitHub repository, GitHub, 2021. Available at: https://github.com/keshmish/IsolationSIRonBarabasi.git (accessed: November 15, 2020).

Backer J., Klinkenberg D., Wallinga J. Incubation period of 2019 novel coronavirus (2019–nCoV) infections among travellers from Wuhan, China, January 20–28, 2020. Euro Surveill, 2020, vol. 25, iss. 5, no. 2000062. https://doi.org/10.2807/1560-7917.ES.2020.25.5.2000062

Woelfel R., Corman V., Guggemos W. Clinical presentation and virological assessment of hospitalized cases of coronavirus disease 2019 in a travel-associated transmission cluster. medRxiv, 2020, no. 20030502. https://doi.org/10.1101/2020.03.05.20030502

Liu Y., Gayle A. A., Wilder-Smith A., Rocklov J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. of Travel Medicine, 2020, vol. 27, no. 2. https://doi.org/10.1093/jtm/taaa021

Kelly L. Kansas Governor Stay at home order N 20-18. Manhattan, Kansas State Government Publ., 2020. Available at: https://governor.kansas.gov/wp-content/uploads/2020/04/20-18-Executed.pdf (accessed: November 15, 2020).

Downloads

Published

2022-06-02

How to Cite

Miheev, S. E., & Mikheev, V. S. (2022). Quality criteria for control of epidemic process: . Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 18(1), 149–162. https://doi.org/10.21638/11701/spbu10.2022.112

Issue

Section

Computer Science