Mathematical modeling of malignant ovarian tumors
DOI:
https://doi.org/10.21638/11701/spbu10.2022.110Abstract
The article explores modeling the development of ovarian cancer, the treatment of this oncologicaldisease in women, the assessment of the time to achieve remission, and the assessment of the time of the onset of relapse. The relevance of the study is that ovarian cancer is one of the most common cancers in women and has the highest mortality rate among all gynecological diseases. Modeling the process of the development of the disease makes it possible to better understand the mechanism of the development of the disease, as well as the time frame of the onset of each stage, as well as the assessment of the survival time. The aim of the work is to develop a model of an ovarian tumor. It is based on a model of competition between two types of cells: epithelial cells (normal cells) and tumor cells (dividing cells). The mathematical interpretation of the competition model is the Cauchy problem for a system of ordinary differential equations. Treatment is seen as the direct destruction of tumor cells by drugs. The behavior of solutions in the vicinity of stationary points is investigated by the eigenvalues of the Jacobi matrix of the right side of the equations. On the basis of this model, the distribution of conditional patients by four stages of the disease is proposed. Biochemical processes that stimulate the accelerated growth of the tumor cell population are modeled by a factor that allows tumor cells to gain an advantage in a competitive relationship with epithelial cells. The spatio-temporal dynamics of an ovarian tumor leads to a modification of the competition model due to the introduction of additional factors into it, taking into account the presence of increased nutrition of ovarian tumors, the exit of the tumor from the plane of the ovary, as well as the effect of treatment on tumor cells. The new model describes the interaction conditions with a system of second-order partial differential equations. The results of computer modeling demonstrate an assessment of the distribution of conditional patients by stages of the disease, the time of onset of relapse, the duration of remission, the obtained theoretical results of modeling are compared with the real data.
Keywords:
mathematical modeling, treatment model, malignant tumor of the ovary, reproductive system
Downloads
References
Аксель Е. М., Виноградова Н. Н. Статистика злокачественных новообразований женских репродуктивных органов // Онкогинекология. 2018. T. 3(27). С. 64–78.
Siegel R. L., Miller K. D., Jemal A. Cancer statistics, 2020 // CA Cancer J. Clin. 2020. Vol. 70(1). P. 7–30. https://doi.org/10.3322/caac.21590
Кит О. И., Франциянц Е. М., Моисеенко Т. И., Вереникина Е. В., Черярина Н. Д., Козлова Л. С., Погорелова Ю. А. Факторы роста в ткани различных стадий рака яичников // Мед. вестн. Северного Кавказа. 2017. Т. 12. № 1. C. 48–52. https://doi.org/10.14300/mnnc.2017
Yin A., Moes D. J. A. R., van Hasselt J. G. C., Swen J. J., Guchelaar H. J. A review of mathematical models for tumor dynamics and treatment resistance evolution of solid tumors // CPT Pharmacometrics Syst. Pharmacol. 2019. Vol. 8. P. 720–737. https://doi.org/10.1002/psp4.12450
Das P., Mukherjee S., Das Pr. An investigation on Michaelis — Menten kinetics based complex dynamics of tumor-immune interaction // Chaos, Solitons and Fractals. 2019. Vol. 128. P. 297–305. https://doi.org/10.1016/j.chaos.2019.08.006
Mahlbacher G. E., Reihmer K. C., Frieboes H. B. Mathematical modeling of tumor-immune cell interactions // J. of Theoretical Biology. 2019. Vol. 469. P. 47–60. https://doi.org/10.1016/j.jtbi.2019.03.002
Liu P., Liu X. Dynamics of a tumor-immune model considering targeted chemotherapy // Chaos, Solitons and Fractals. 2017. Vol. 98. P. 7–13. https://doi.org/10.1016/j.chaos.2017.03.002
Pang L., Shen L., Zhao Z. Mathematical modelling and analysis of the tumor treatment regimens with pulsed immunotherapy and chemotherapy // Computational and Mathematical Methods in Medicine. 2016. Vol. 1. P. 1–12. https://doi.org/10.1155/2016/6260474
Бусько Е. А., Гончарова А. Б., Рожкова Н. И., Семиглазов В. В., Шишова А. С., Жильцова Е. К., Зиновьев Г. В., Белобородова К. А., Криворотько П. В. Модель системы принятия диагностических решений на основе мультипараметрических ультразвуковых показателей образований молочной железы // Вопросы онкологии. 2020. Т. 66. № 6. С. 653–658. https://doi.org/10.37469/0507-3758-2020-66-6-653-658
Chaplain M. A. J., Sleeman B. D. A mathematical model for the growth and classification of a solid tumor: a new approach via nonlinear elasticity theory using strain-energy functions // Mathematical biosciences. 1992. Vol. 111. N 2. P. 169–215. https://doi.org/10.1016/0025-5564(92)90070-D
Hathout L., Ellingson B. M., Cloughesy T. F., Pope W. P. Patient-specific characterization of the invasiveness and proliferation of low-grade gliomas using serial MR imaging and a mathematical model of tumor growth // Oncology Reports. 2015. Vol. 33. N 6. P. 2883–2888. https://doi.org/10.3892/or.2015.3926
Karaman M. M., Sui Y., Wang H., Magin R. L., Li Y., Zhou X. J. Differentiating low and high grade pediatric brain tumors using a continuous time randomwalk diffusion model at high b-values // Magnetic resonance in medicine. 2016. Vol. 76. N 4. P. 1149–1157. https://doi.org/10.1002/mrm.26012
Ожиганова И. Н. Морфология рака яичников в классификации ВОЗ 2013 года // Практическая онкология. 2014. Т. 15. № 4. С. 143–152.
Жорданиа К. И., Калиничева Е. В., Моисеев А. А. Рак яичников: эпидемиология, морфология и гистогенез // Онкогинекология. 2017. Т. 3(23). С. 26–32.
Жорданиа К. И., Хохлова С. В. Ранний рак яичников: наш взгляд на проблему // Опухоли женской репродуктивной системы. 2011. Т. 3. С. 56–64.
Козлова Л. С., Погорелова Ю. А. Факторы роста в ткани различных стадий рака яичников // Мед. вестн. Северного Кавказа. 2017. Т. 12. № 1. С. 42–44.
Zheng X., Sweidan M. A mathematical model of angiogenesis and tumor growth: analysis and application in anti-angiogenesis therapy // J. of Mathematical Biology. 2018. Vol. 77. P. 1589–1622. https://doi.org/10.1007/s00285-018-1264-4
Хохлова С. В. Роль ингибиторов сосудистого эндотелиального фактора роста в лечении рака яичников // Опухоли женской репродуктивной системы. 2010. Т. 3. C. 35–44.
Гончарова А. Б., Колпак Е. П., Расулова М. М., Шмелева А. А. Математическое моделирование онкологического заболевания // Перспективы науки. 2020. Т. 12(135). С. 20–26.
Гончарова А. Б., Колпак Е. П., Расулова М. М., Абрамова А. В. Математическое моделирование лечения онкологического заболевания // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2020. Т. 16. Вып. 4. С. 437–446. https://doi.org/10.21638/11701/spbu10.2020.408
Domschke P., Trucu D., Gerisch A., Chaplain M. A. J. Mathematical modeling of cancer invasion: Implications of cell adhesion variability for tumour infiltrative growth patterns // J. of Theoretical Biology. 2014. Vol. 361. P. 41–60. https://doi.org/10.1016/j.jtbi.2014.07.01
Malinzi J., Sibanda P., Mambili-Mamboundou H. Response of immunotherapy to yumour-TICLs interactions: a travelling wave analysis // Abstract and Applied Analysis. 2014. P. 1–10. https://doi.org/10.1155/2014/137015
Кузнецов M. Б., Колобов А. В. Влияние xимиотеpапии на пpогpеccию биклональной опуxоли — анализ методом математичеcкого моделиpования // Биофизика. 2019. Т. 64. Вып. 2. C. 371–387. https://doi.org/10.1134/S0006302919020170
Кузнецов M. Б., Губеpнов В. В., Колобов А. В. Влияние динамики интеpcтициальной жидкоcти на pоcт и теpапию ангиогенной опуxоли. Анализ c помощью математической модели // Биофизика. 2017. Т. 62. Вып. 1. C. 151–160.
Городнова Т. В., Баранов С. Б., Тятьков С. А., Шевкунов Л. Н., Соколенко А. П., Котив Х. Б., Имянитов Е. Н., Берлев И. В. Опыт использования лучевой терапии при brca-позитивном раке яичников // Сиб. онкологич. журн. 2017. Т. 16(4). С. 103–107.
Chu E., De Vita VT Jr. A history of cancer chemotherapy // Cancer Res. 2008. Vol. 68(21). P. 8643–8653. https://doi.org/10.1158/0008-5472
References
Aksel' Ye. M., Vinogradova N. N. Statistika zlokachestvennykh novoobrazovaniy zhenskikh reproduktivnykh organov [Statistics of malignant neoplasms of female reproductive organs]. Onkoginekologiia [Oncogynecology], 2018, vol. 3(27), pp. 64–78. (In Russian)
Siegel R. L., Miller K. D., Jemal A. Cancer statistics, 2020. CA Cancer J. Clin, 2020, vol. 70(1), pp. 7–30. https://doi.org/10.3322/caac.21590
Kit O. I., Frantsiyants E. M., Moiseenko T. I., Verenikina E. V., Cheryarina N. D., Kozlova L. S., Pogorelova Yu. A. Faktory rosta tkaney razlichnykh stadiy raka yaichnikov [Growth factors in tussues of ovarian cancer at various]. Meditsinskii Vestnik Severnogo Kavkaza [Medical Bulletin of the North Caucasus], 2017, vol. 12, no. 1, pp. 48–52. https://doi.org/10.14300/mnnc.2017 (In Russian)
Yin A., Moes D. J. A. R., van Hasselt J. G. C., Swen J. J., Guchelaar H. J. A review of mathematical models for tumor dynamics and treatment resistance evolution of solid tumors. CPT Pharmacometrics Syst. Pharmacol, 2019, vol. 8, pp. 720–737. https://doi.org/10.1002/psp4.12450
Das P., Mukherjee S., Das Pr. An investigation on Michaelis — Menten kinetics based complex dynamics of tumor-immune interaction. Chaos, Solitons and Fractals, 2019, vol. 128, pp. 297–305. https://doi.org/10.1016/j.chaos.2019.08.006
Mahlbacher G. E., Reihmer K. C., Frieboes H. B. Mathematical modeling of tumor-immune cell interactions. J. of Theoretical Biology, 2019, vol. 469, pp. 47–60. https://doi.org/10.1016/j.jtbi.2019.03.002
Liu P., Liu X. Dynamics of a tumor-immune model considering targeted chemotherapy. Chaos, Solitons and Fractals, 2017, vol. 98, pp. 7–13. https://doi.org/10.1016/j.chaos.2017.03.002
Pang L., Shen L., Zhao Z. Mathematical modelling and analysis of the tumor treatment regimens with pulsed immunotherapy and chemotherapy. Computational and Mathematical Methods in Medicine, 2016, vol. 1, pp. 1–12. https://doi.org/10.1155/2016/6260474
Busko E. A., Goncharova A. B., Rozhkova N. I., Semiglazov V. V., Shishova A. S., Zhiltsova E. K., Zinoviev G. V., Beloborodova K. A., Krivorotko P. V. Model' sistemy prinyatiya diagnosticheskikh resheniy na osnove mul'tiparametricheskikh ul'trazvukovykh pokazateley obrazovaniya molochnoy zhelezy [Model for making diagnostic decisions in multiparametric ultrasound of breast lesions]. Voprosy onkologii [Problems in oncology], 2020, vol. 66, no. 6, pp. 653–658. https://doi.org/10.37469/0507-3758-2020-66-6-653-658 (In Russian)
Chaplain M. A. J., Sleeman B. D. A mathematical model for the growth and classification of a solid tumor: a new approach via nonlinear elasticity theory using strain-energy functions. Mathematical biosciences, 1992, vol. 111, no. 2, pp. 169–215. https://doi.org/10.1016/0025-5564(92)90070-D
Hathout L., Ellingson B. M., Cloughesy T. F., Pope W. P. Patient-specific characterization of the invasiveness and proliferation of low-grade gliomas using serial MR imaging and a mathematical model of tumor growth. Oncology Reports, 2015, vol. 33, no. 6, pp. 2883–2888. https://doi.org/10.3892/or.2015.3926
Karaman M. M., Sui Y., Wang H., Magin R. L., Li Y., Zhou X. J. Differentiating low and high grade pediatric brain tumors using a continuous time randomwalk diffusion model at high b-values. Magnetic resonance in medicine, 2016, vol. 76, no. 4, pp. 1149–1157. https://doi.org/10.1002/mrm.26012
Ozhiganova I. N. Morfologiya raka yaichnikov v klassifikatsii VOZ 2013 goda [Morphology of ovarian cancer in the WHO classification of 2013]. Prakticheskaia onkologiia [Practical Oncology], 2014, vol. 15, no. 4, pp. 143–152. (In Russian)
Zhordania K. I., Kalinicheva E. V., Moiseev A. A. Rak yaichnikov: epidemiologiya, morfologiya i gistogenez [Ovarian cancer: epidemiology, morphology and histogenesis]. Onkoginekologiia [Oncogynecology], 2017, vol. 3(23), pp. 26–32. (In Russian)
Zhordania K. I., Khokhlova S. V. Ranniy rak yaichnikov: nash vzglyad na problemu [Early ovarian cancer: our view of the problem]. Opukholi zhenskoi reproduktivnoi sistemy [Tumors of the female reproductive system], 2011, vol. 3, pp. 56–64. (In Russian)
Kozlova L. S., Pogorelova Yu. A. Faktory rosta v tkani razlichnykh stadiy raka yaichnikov [Growth factors in tissue of different stages of ovarian cancer]. Meditsinskii Vestnik Severnogo Kavkaza [Medical Bulletin of the North Caucasus], 2017, vol. 12, no. 1, pp. 42–44. (In Russian)
Zheng X., Sweidan M. A mathematical model of angiogenesis and tumor growth: analysis and application in anti-angiogenesis therapy. J. of Mathematical Biology, 2018, vol. 77, pp. 1589–1622. https://doi.org/10.1007/s00285-018-1264-4
Khokhlova S. V. Rol' ingibitorov sosudistogo endotelial'nogo faktora rosta v lechenii raka yaichnikov [The role of vascular endothelial growth factor inhibitors in the treatment of ovarian cancer]. Opukholi zhenskoi reproduktivnoi sistemy [Tumors of the female reproductive system], 2010, vol. 3, pp. 35–44. (In Russian)
Goncharova A. B., Kolpak E. P., Rasulova M. M., Shmeleva A. A Matematicheskoye modelirovaniye onkologicheskogo zabolevaniya [Mathematical modeling of oncological disease]. Perspektivy nauki [Prospects of science], 2020, vol. 12(135), pp. 20–26. (In Russian)
Goncharova A. B., Kolpak E. P., Rasulova M. M., Abramova A. V. Matematicheskoye modelirovaniye lecheniya onkologicheskogo zabolevaniya [Mathematical modeling of cancer treatment]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2020, vol. 16, iss. 4, pp. 437–446. https://doi.org/10.21638/11701/spbu10.2020.408 (In Russian)
Domschke P., Trucu D., Gerisch A., Chaplain M. A. J. Mathematical modeling of cancer invasion: Implications of cell adhesion variability for tumour infiltrative growth patterns. J. of Theoretical Biology, 2014, vol. 361, pp. 41–60. https://doi.org/10.1016/j.jtbi.2014.07.01
Malinzi J., Sibanda P., Mambili-Mamboundou H. Response of immunotherapy to yumour-TICLs interactions: a travelling wave analysis. Abstract and Applied Analysis, 2014, pp. 1–10. https://doi.org/10.1155/2014/137015
Kuznetsov M. B., Kolobov A. V. Vliyaniye khimiotepapii na progressiyu biklonal'noy opukholi — analiz metodom matematicheckogo modelipovaniya [Influence of chemotherapy on the progression of biclonal tumor — analysis by the method of mathematical modeling]. Biofizika [Biophysics], 2019, vol. 64, iss. 2, pp. 371–387. https://doi.org/10.1134/S0006302919020170 (In Russian)
Kuznetsov M. B., Gubernov V. V., Kolobov A. V. Vliyaniye dinamiki interstitsial'noy zhidkosti na rost i terapiyu angiogennoy opukholi. Analiz c pomoshch'yu matematicheskoy modeli [Influence of the dynamics of the interstitial fluid on the growth and therapy of angiogenic tumor. Analysis using a mathematical model]. Biofizika [Biophysics], 2017, vol. 62, iss. 1, pp. 151–160. (In Russian)
Gorodnova T. V., Baranov S. B., Tyatkov S. A., Shevkunov L. N., Sokolenko A. P., Kotiv Kh. B., Imyanitov E. N., Berlev I. V. Opyt ispol'zovaniya luchevoy terapii pri brca-pozitivnom rake yaichnikov [Experience of using radiation therapy for brca-positive ovarian cancer]. Sibirskii onkologicheskii zhurnal [Siberian Journal of Oncology], 2017, vol. 16(4), pp. 103–107. (In Russian)
Chu E., De Vita VT Jr. A history of cancer chemotherapy. Cancer Res., 2008, vol. 68(21), pp. 8643–8653. https://doi.org/10.1158/0008-5472
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.