On the convergence of dynamic quasi-periodic systems

Authors

  • Sergey A. Strekopytov St. Petersburg State University, 199034, St. Petersburg, Russian Federation
  • Maria V. Strekopytova St. Petersburg State University, 199034, St. Petersburg, Russian Federation

DOI:

https://doi.org/10.21638/11701/spbu10.2022.106

Abstract

The convergence problem for non-autonomous systems of differential equations with a quasiperiodic right-hand side in an independent argument is considered. It is proposed to replace the consideration of the set of solutions of the system of differential equations under consideration by considering the movements of a dynamic quasi-periodic system generated by these differential equations. Necessary and sufficient conditions are obtained when a dynamic quasi-periodic system has the convergence property, and a proof is given.

Keywords:

convergence, dynamic quasi-periodic system, quasi-periodic motion

Downloads

Download data is not yet available.
 

References

Литература

Биркгоф Г. Динамические системы. Ижевск: Издат. дом «Удмуртский университет», 1999. 408 c.

Зубов В. И. Колебания в нелинейных и управляемых системах. Л.: Судпромгиз, 1962. 632 c.

Зубов В. И. Колебания и волны. Л.: Изд-во Ленингр. ун-та, 1989. 416 с.

Плисс В. А. Нелокальные проблемы теории колебаний. М.: Наука, 1964. 368 с.

Плисс В. А. Интегральные множества периодических систем дифференциальных уравнений. М.: Наука, 1977. 304 с.

Якубович В. А., Старжинский В. М. Линейные дифференциальные уравнения с периодическими коэффициентами и их приложения. М.: Наука, 1972. 720 с.

Levitan B., Zhikov V. Almost periodic functions and differential equations. New York: Cambridge University Press, 1982. 211 p.

Косов А. А. Исследование конвергенции сложных почти периодических систем с помощью вектор-функций сравнения с компонентами в виде форм четной степени // Изв. высш. учеб. заведений. Математика. 2015. T. 59. № 7. C. 25–35.

Kosov A. A., Shchennikov V. N. On the convergence phenomenon in complex almost periodic systems // Differential Equations. 2014. Vol. 50. Iss. 12. P. 1573–1583.

Aleksandrov A., Aleksandrova E. Convergence conditions for some classes of nonlinear systems // Systems $&$ Control Letters. 2017. Vol. 104. P. 72–77.

Стрекопытов С. А. Теория квазипериодических систем. СПб.: ВВМ, 2014. 157 с.

Атаева Н. Н. Свойство конвергенции для разностных систем // Вестник Санкт-Петербургского университета. Cер. 10. Прикладная математика. Информатика. Процессы управления. 2004. Вып. 4. C. 91–98.

Екимов А. В., Жабко А. П., Яковлев П. В. Устойчивость дифференциально-разностных систем с линейно возрастающим запаздыванием. I. Линейные управляемые системы // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2020. T. 16. Вып. 3. C. 316–325.


References

Birkhoff G. Dinamicheskie sistemi [ Dynamical systems]. Ijevsk, Udmurtskiy University Press, 1999, 408 p. (In Russian)

Zubov V. I. Kolebaniya v nelineynih i upravlyaemih sistemah [ Oscillations in nonlinear and controlled systems]. Leningrad, Sudpromgiz Publ., 1962, 632 p. (In Russian)

Zubov V. I. Kolebaniya i volni [ Oscillations and waves]. Leningrad, Leningrad University Press, 1989, 416 p. (In Russian)

Pliss V. A. Nelokalnye problemi teorii kolebaniy [ Nonlocal problems of the theory of oscillations]. Moscow, Nauka Publ., 1964, 368 p. (In Russian)

Pliss V. A. Integralnie mnojestva periodicheskih sistem differencialnih uravneniy [ Integral sets of periodic systems of differential equations]. Moscow, Nauka Publ., 1977, 304 p. (In Russian)

Yakubovich V. A., Starzhinskii V. M. Lineynie differencialnie uravneniya s periodicheskimi koefficientami i ih prilojeniya [ Linear differential equation with periodic coefficients and applications]. Moscow, Nauka Publ., 1972, 720 p. (In Russian)

Levitan B., Zhikov V. Almost periodic functions and differential equations. New York, Cambridge University Press, 1982, 211 p.

Kosov A. A. Issledovanie konvergencii slojnih pochti periodicheskih sistem s pomosh'u vektor-funkciy sravneniya s komponentami v vide form chetnoy stepeni [Investigation of convergence of large scale almost periodic systems by means of comparison vector functions with components as forms of even degrees]. Izvestiia vysshikh uchebnykh zavedenii. Matematika [ Russian Mathematics], 2015, vol. 59, no. 7, pp. 25–35. (In Russian)

Kosov A. A., Shchennikov V. N. On the convergence phenomenon in complex almost periodic systems. Differential Equations, 2014, vol. 50, iss. 12, pp. 1573–1583.

Aleksandrov A., Aleksandrova E. Convergence conditions for some classes of nonlinear systems. Systems $&$ Control Letters, 2017, vol. 104, pp. 72–77.

Strekopytov S. A. Teoriya kvasiperiodicheskih sistem [ Theory of quasi-periodic systems]. St Petersburg, VVM Publ., 2014, 157 p. (In Russian)

Ataeva N. N. Svoiystvo konvergencii dlya raznostnih sistem [Property of convergence for difference systems]. Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2004, iss. 4, pp. 91–98. (In Russian)

Ekimov A. V., Zhabko A. P., Yakovlev P. V. Ustoiychivost' differencial'no-raznostnih sistem s lineyno vozrastayushim zapazdivaniem [The stability of differential-difference equations with proportional time delay]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2020, vol. 16, iss. 3, pp. 316–325. https://doi.org/10.21638/11701/spbu10.2020.308 (In Russian)

Published

2022-06-02

How to Cite

Strekopytov, S. A., & Strekopytova, M. V. (2022). On the convergence of dynamic quasi-periodic systems. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 18(1), 79–86. https://doi.org/10.21638/11701/spbu10.2022.106

Issue

Section

Applied Mathematics