Stability of Lurie-type systems with asynchronous and synchronous switching and constant delays
DOI:
https://doi.org/10.21638/11701/spbu10.2023.302Abstract
The problems of analysis for systems with synchronous and asynchronous switching have been actively studied for the linear case. In this paper, a switched system of difference-differential equations, in which the right-hand side consists of a linear term and an essentially nonlinear part containing sector-type components is considered. This kind of systems belongs to the class of Lurie indirect control systems. Sufficient conditions on the system parameters and the switching law are investigated for asymptotic stability to be guaranteed both in the case of synchronous switching between subsystems and in asynchronous one. In the latter case it is supposed that the nonlinear delayed part switches with a lag equal to the corresponding delay. It is required that stability should be preserved for any constant positive delays. The problem is solved using the Lyapunov — Krasovsky approach. The functional is chosen that includes a quadratic form and integrals of nonlinearities. Restrictions that ensure asymptotic stability for an arbitrary switching law are found. With such an approach for the asynchronous case these conditions turn out to be less restrictive. By using multiple functionals the restrictions on the lengths of intervals between switchings are also obtained. This type of conditions are similar for both cases of synchronous and asynchronous switching. Theoretical results are demonstrated by a specially selected example.
Keywords:
nonlinear systems, asymptotic stability, synchronous and asynchronous switching, delays, Lyapunov–Krasovskii method
Downloads
References
Мурзинов И. Е. Построение общей функции Ляпунова для семейства механических систем с одной степенью свободы // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. Сер. 10. 2013. Вып. 4. С. 49–57.
Лакрисенко П. А. Об устойчивости положений равновесия нелинейных гибридных механических систем // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. Сер. 10. 2015. Вып. 3. С. 116–125.
Jin Y., Fu J., Zhang Y. M., Jing Y. Fault-tolerant control of a class of switched nonlinear systems with application to flight control // International Conference on Intelligent Robotics and Applications. Berlin; Heidelberg: Springer, 2012. P. 453–462.
Niu B., Zhao X., Fan X., Cheng Y. A new control method for state-constrained nonlinear switched systems with application to chemical process // International Journal of Control. 2015. Vol. 88. N 9. P. 1693–1701.
Li C., Huang T. Exponential stability of time-switched two-subsystem nonlinear systems with application to intermittent control // Journal of Inequalities and Applications. 2009. Vol. 2009. P. 1–23.
Aleksandrov A. Y., Stepenko N. A. Stability analysis of gyroscopic systems with delay under synchronous and asynchronous switching // Journal of Applied and Computational Mechanics. 2022. Vol. 8. N 3. P. 1113–1119.
Cheng J., Zhu H., Zhong S., Zhang Y. Robust stability of switched delay systems with average dwell time under asynchronous switching // Journal of Applied Mathematics. 2012. Vol. 2012. https://doi.org/10.1155/2012/956370
Zong G., Wang R., Zheng W. X., Hou L. Finite-time stabilization for a class of switched time-delay systems under asynchronous switching // Applied Mathematics and Computation. 2013. Vol. 219. N 11. P. 5757–5771.
Gao L., Wang D. Input-to-state stability and integral input-to-state stability for impulsive switched systems with time-delay under asynchronous switching // Nonlinear Analysis: Hybrid Systems. 2016. Vol. 20. P. 55–71.
Aleksandrov A., Andriyanova N., Efimov D. Stability analysis of Persidskii time-delay systems with synchronous and asynchronous switching // International Journal of Robust and Nonlinear Control. 2022. Vol. 32. N 6. P. 3266–3280.
Aleksandrov A., Efimov D. Stability analysis of switched homogeneous time-delay systems under synchronous and asynchronous commutation // Nonlinear Analysis: Hybrid Systems. 2021. Vol. 42. P. 101090.
Александрова И. В., Жабко А. П. Функционалы Ляпунова — Красовского для однородных систем с несколькими запаздываниями // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2021. Т. 17. Вып. 2. С. 183–195. https://doi.org/10.21638/11701/spbul0.2021.208
Kuptsova S. E., Kuptsov S. Yu. Research of the asymptotic equilibrium of time-delay systems by junction of Lyapunov–Krasovskii and Razumikhin approaches // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2022. Т. 18. Вып. 2. С. 198–208. https://doi.org/10.21638/11701/spbul0.2022.201
Александров А. Ю., Платонов А. В., Чен Я. К вопросу об абсолютной устойчивости нелинейных систем с переключениями // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. Сер. 10. 2008. Вып. 2. С. 119–133.
Эльсгольц Л. Э., Норкин С. Б. Введение в теорию дифференциальных уравнений с отклоняющимся аргументом. М.: Наука, 1971. 296 с.
Krasovskii N. N. Stability of motion. Applications of Lyapunov’s second method to differential systems and equations with delay. Stanford: Stanford University Press, 1963. 188 p.
Kaszkurewicz E., Bhaya A. Matrix diagonal stability in systems and computation. Boston, MA: Birkhauser, 1999. 352 p.
References
Murzinov I. E. Postroenie obshchei funktsii Liapunova dlia semeistva mekhanicheskikh sistem s odnoi stepen'iu svobody [On construction of common Lyapunov function for a family of mechanical systems with one degree of freedom]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes. Series 10, 2013, iss. 4, pp. 49–57. (In Russian)
Lakrisenko P. A. Ob ustoichivosti polozhenii ravnovesiia nelineinykh gibridnykh mekhanicheskikh sistem [On the stability of the equilibrium positions of nonlinear mechanical hybrid system]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes. Series 10, 2015, iss. 3, pp. 116–125. (In Russian)
Jin Y., Fu J., Zhang Y. M., Jing Y. Fault-tolerant control of a class of switched nonlinear systems with application to flight control. International Conference on Intelligent Robotics and Applications. Berlin, Heidelberg, Springer Publ., 2012, pp. 453–462.
Niu B., Zhao X., Fan X., Cheng Y. A new control method for state-constrained nonlinear switched systems with application to chemical process. International Journal of Control, 2015, vol. 88, iss. 9, pp. 1693–1701.
Li C., Huang T. Exponential stability of time-switched two-subsystem nonlinear systems with application to intermittent control. Journal of Inequalities and Applications, 2009, vol. 2009, pp. 1–23.
Aleksandrov A. Y., Stepenko N. A. Stability analysis of gyroscopic systems with delay under synchronous and asynchronous switching. Journal of Applied and Computational Mechanics, 2022, vol. 8, no. 3, pp. 1113–1119.
Cheng J., Zhu H., Zhong S., Zhang Y. Robust stability of switched delay systems with average dwell time under asynchronous switching. Journal of Applied Mathematics, 2012, vol. 2012. https://doi.org/10.1155/2012/956370
Zong G., Wang R., Zheng W. X., Hou L. Finite-time stabilization for a class of switched time-delay systems under asynchronous switching. Applied Mathematics and Computation, 2013, vol. 219, no. 11, pp. 5757–5771.
Gao L., Wang D. Input-to-state stability and integral input-to-state stability for impulsive switched systems with time-delay under asynchronous switching. Nonlinear Analysis: Hybrid Systems, 2016, vol. 20, pp. 55–71.
Aleksandrov A., Andriyanova N., Efimov D. Stability analysis of Persidskii time-delay systems with synchronous and asynchronous switching. International Journal of Robust and Nonlinear Control, 2022, vol. 32, no. 6, pp. 3266–3280.
Aleksandrov A., Efimov D. Stability analysis of switched homogeneous time-delay systems under synchronous and asynchronous commutation. Nonlinear Analysis: Hybrid Systems, 2021, vol. 42, p. 101090.
Alexandrova I. V., Zhabko A. P. Funktsionaly Liapunova — Krasovskogo dlia odnorodnykh sistem s neskol'kimi zapazdyvaniiami [Lyapunov–Krasovskii functionals for homogeneous systems with multiple delays]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2021, vol. 17, iss. 2, pp. 183–195. https://doi.org/10.21638/11701/spbu10.2021.208 (In Russian)
Kuptsova S. E., Kuptsov S. Yu. Research of the asymptotic equilibrium of time-delay systems by junction of Lyapunov–Krasovskii and Razumikhin approaches. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2022, vol. 18, iss. 2, pp. 198–208. https://doi.org/10.21638/11701/spbul0.2022.201
Aleksandrov A. Yu., Platonov A. V., Chen Y. K voprosu ob absoliutnoi ustoichivosti nelineinykh sistem s perekliucheniiami [On the absolute stability of nonlinear switched systems]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes. Series 10, 2008, iss. 2, pp. 119–133. (In Russian)
El'sgol'ts L. E., Norkin S. B. Vvedenie v teoriiu differentsial'nykh uravnenii s otkloniaiushchimsia argumentom [Introduction to the theory and application of differential equations with deviating arguments]. Moscow, Nauka Publ., 1971, 296 p. (In Russian)
Krasovskii N. N. Stability of motion. Applications of Lyapunov’s second method to differential systems and equations with delay. Stanford, Stanford University Press, 1963, 188 p.
Kaszkurewicz E., Bhaya A. Matrix diagonal stability in systems and computation. Boston, MA, Birkhauser Publ., 1999, 352 p.
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.