On the question of a constructive controllability criterion. Pt I. Cyclic invariant subspaces

Authors

  • Elizaveta A. Kalinina St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation
  • Alexander M. Kamachkin St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation
  • Nikolai A. Stepenko St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation
  • Grigoriy Sh. Tamasyan Mozhaisky Military Space Academy, 13, Zhdanovskaya uh, St. Petersburg, 197082, Russian Federation; Institute for Problems of Mechanical Engineering of the Russian Academy of Sciences, 61, Bolshoy pr. V. O., St. Petersburg, 199178, Russian Federation

DOI:

https://doi.org/10.21638/11701/spbu10.2023.213

Abstract

The rank of the Kalman’s controllability matrix of linear systems depends on the bases of the invariant cyclic subspaces of the state matrix generated by the columns of the input matrix. The case of the Jordan form of the state matrix and scalar control is studied in detail. It is shown that the dimension of cyclic subspaces is determined by the index numbers of the first non-zero elements of the coordinate blocks of the columns of the input matrix. The formation of the bases of these subspaces is completely disclosed. Based on this, the basis of the space of a constructive control system is constructed.

Keywords:

controllability, system structure, cyclic invariant subspaces

Downloads

Download data is not yet available.
 

References

Литература

Зубов В. И. Теория оптимального управления судном и другими подвижными объектами. Л.: Судостроение, 1966. 352 с.

Смирнов Е. Я. Стабилизация программных движений. СПб.: Изд-во С.-Петерб. ун-та, 1997. 307 с.

Калман Р., Фалб П., Арбиб М. Очерки по математической теории систем / пер. с англ. Э. Л. Наппельбаума; под ред. Я. З. Цыпкина. Изд. 4. М.: Едиториал УРСС, 2010. 398 c.

Леонов Г. А., Шумафов М. М. Методы стабилизации линейных управляемых систем. СПб.: Изд-во С.-Петерб. ун-та, 2005. 421 с.

Камачкин А. М., Степенко Н. А., Хитров Г. М. К теории конструктивного построения линейного регулятора // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2020. Т. 16. Вып. 3. С. 326-344. https://doi.org/10.21638/11701/spbu10.2020.309

Kalinina E., Smol’kin Y., Uteshev A. Robust schur stability of a polynomial matrix family // CASC 2019. LNCS. Vol. 11661 / eds by M. England, W. Koepf, T. M. Sadykov, W. M. Seiler, E. V. Vorozhtsov. Cham: Springer, 2019. P. 262-279. https://doi.org/10.1007/978-3-030-26831-2_18

Фаддеев Д. К. Лекции по алгебре. М.: Наука, 1984. 416 с.

Гантмахер Ф. Р. Теория матриц. М.: Наука, 1966. 576 с.

Фаддеев Д. К., Соминский И. С. Сборник задач по высшей алгебре. Изд. 10. М.: Наука, 1972. 304 с.

Попов В. М. Гиперустойчивость автоматических систем / пер. с рум. А. Х. Гелига, Э. В. Яковлевой; под ред. В. А. Якубовича. М.: Наука, 1970. 453 с.

References

Zubov V. I. Teoriia optimal'nogo upravleniia sudnom i drugimi podvizhnymi ob"ektami [ Theory of optimal control of a ship and other mobile objects ]. Leningrad, Sudostroenie Publ., 1966, 352 p. (In Russian)

Smirnov E. Ya. Stabilizatsiia programmnykh dvizhenii [ Stabilization of program movements ]. St. Petersburg, Saint Petersburg University Press, 1997, 307 p. (In Russian)

Kalman R. E., Falb P. L., Arbib M. A. Topics in mathematical system theory. Second ed. New York, McGraw-Hill Book Company Publ., 1969, 358 p. (Rus. ed.: Kalman R. E., Falb P. L., Arbib M. A. Ocherki po matematicheskoi teorii sistem Moscow, Editorial URSS Publ., 2010, 398 p.)

Leonov G. A., Shumafov M. M. Metody stabilizatsii lineinykh upravliaemykh sistem [ Methods of stabilization of linear controlled systems ]. St. Petersburg, Saint Petersburg University Press, 2005, 421 p. (In Russian)

Kamachkin A. M., Stepenko N. A., Chitrov G. M. K teorii konstruktivnogo postroeniia lineinogo reguliatora [On the theory of constructive construction of a linear controller]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2020, vol. 16, iss. 3, pp. 326-344. https://doi.org/10.21638/11701/spbu10.2020.309 (In Russian)

Kalinina E., Smol’kin Y., Uteshev A. Robust schur stability of a polynomial matrix family. CASC 2019. LNCS, vol. 11661. Eds by M. England, W. Koepf, T. M. Sadykov, W. M. Seiler, E. V. Vorozhtsov. Cham, Springer Publ., 2019, pp. 262-279. https://doi.org/10.1007/978-3-030-26831-2_18

Faddeev D. K. Lektsii po algebre [ Lectures in algebra ]. Moscow, Nauka Publ., 1984, 416 p. (In Russian)

Gantmacher F. R. Teoriia matrits [ The theory of matrices ]. Moscow, Nauka Publ., 1966, 576 p. (In Russian)

Faddeev D. K., Sominskii I. S. Sbornik zadach po vysshei algebre [ A collection of exercises in higher algebra ]. Moscow, Nauka Publ., 1972, 304 p. (In Russian)

Popov V. M. Giperustoichivost' avtomaticheskikh sistem [ Hyperstability of automatic systems ]. Moscow, Nauka Publ., 1970. 453 p. (In Russian)

Published

2023-07-27

How to Cite

Kalinina, E. A., Kamachkin, A. M., Stepenko, N. A., & Tamasyan, G. S. (2023). On the question of a constructive controllability criterion. Pt I. Cyclic invariant subspaces. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 19(2), 283–299. https://doi.org/10.21638/11701/spbu10.2023.213

Issue

Section

Control Processes