Identification of low and medium intensity gas leakage location in medium and ultra-high pressure gas pipelines

Authors

  • Galina I. Kurbatova St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation
  • Vladimir A. Klemeshev St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/11701/spbu10.2023.208

Abstract

An efficient method for calculating the location of stationary gas leakage in wells and gas pipelines with medium and ultra-high pressures is presented. An algorithm for constructing the dependence of the compressibility factor of the gas mixture with a predominance of methane in the region of ultra-high pressures based on experimental data of pressure and temperature is proposed. The algorithm for calculating the leakage location is based on the Bellman method of quasi-linearization of nonlinear problems, with an additional hypothesis of the linear dependence of pressure and temperature on the leakage location coordinates used at each iteration. The issue of selecting the initial approximation is considered, and the advantage of calculating the initial approximation using a simplified non-isothermal flow model is justified. Examples of solving practical problems of high interest are given, and the high accuracy of calculating the gas leakage location using the proposed algorithm in gas pipelines with medium pressures (around 9 MPa) and ultra-high pressures (around 20 MPa) for small and medium gas leaks is demonstrated.

Keywords:

leakage location, gas pipelines, ultra-high pressures, equations of state, compressibility coefficient, mathematical models, parameter identification method

Downloads

Download data is not yet available.
 

References

Литература

Кузема А. В., Чуносов О. Ф., Шарохин В. Ю., Гурин А. И., Марков Ф. С., Садртдинов Р. А., Хохлов А. Н., Акимов Н. Н., Бухвалов И. Р., Евсеев С. В. Инновационные разработки, повышающие надежность и безопасность эксплуатации магистральных газопроводов посредством применения подсистемы обнаружения нештатных событий // Газовая промышленность. 2022. Спецвыпуск № 1(829). С. 32-40.

Лаптева Т. И., Мансуров М. Н., Шабарчина М. В., Ким С. Д., Копаева Л. А. Эксплуатационная надежность морских трубопроводов в сложных инженерно-геологических условиях континентального шельфа России // Безопасность труда в промышленности. 2018. № 1. С. 30-34.

Thiberville C., Wang Y., Waltrich P., Williams W., Kam S. I. Modeling of smart pigging for pipeline leak detection: From mathematical formulation to large-scale application // SPE Gas & Oil Technology Showcase and Conference, October 21-23, 2019. Dubai, UAE: Society of Petroleum Engineers, 2019. P. 1-27. https://doi.org/10.2118/198648-MS

Kurbatova G., Klemeshev V., Philippov V. Calculation of depressurization coordinate in underground and offshore gas pipelines // J. Phys. Conf. Ser. 2022. Vol. 2162. N 012023. https://doi.org/10.1088/1742-6596/2162/1/012023

Kurbatova G. I., Klemeshev V. A. Mathematical apparatus for detecting leakage in gas pipelines // Math. Models Comput. Simul. 2022. Vol. 14. Iss. 2. P. 203-212. https://doi.org/10.1134/S2070048222020090

Сулейманов В. А. Некоторые вопросы термодинамики процесса трубопроводного транспорта природного газа // Повышение надежности и безопасности объектов газовой промышленности. 2022. № 2(51). С. 29-45.

Курбатова Г. И., Ермолаева Н. Н., Филиппов В. Б., Филиппов К. Б. Проектирование газопроводов в северных морях. СПб.: Лань, 2020. 352 с.

Датчики температуры и давления от НПО "Вакууммаш" // СФЕРА. Нефть и газ. 2022. № 2(85). С. 74-76.

Соломичев Р. И., Соломичева С. В. Система самодиагностики ультразвуковых расходомеров как функция контроля узла учета газа в эксплуатации // СФЕРА. Нефть и газ. 2022. № 4(87). С. 40-46.

Курбатова Г. И., Виноградова Е. М., Клемешев В. А. Анализ упрощенных моделей транспортировки газа. Расчет местоположения утечки газа в трубопроводе // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2022. Т. 18. Вып. 2. С. 239-252. https://doi.org/10.21638/11701/spbu10.2022.205

Kurbatova G. I., Klemeshev V. A., Egorov N. V. Estimation of possibilities of calculations based on simplified models of the leak location in gas pipelines // Technical Physics. 2022. Vol. 67. Iss. 10. P. 1309-1315. https://doi.org/10.21883/TP.2022.10.54357.119-22

Васильев О. Ф., Бондарев Э. А., Воеводин А. Ф., Каниболотский М. А. Неизотермическое течение газа в трубах. Новосибирск: Наука, 1978. 128 с.

Справочник государственных стандартов. Большая база ГОСТов, СНиПов: СТО Газпром 2-3.5-051-2006. Нормы технологического проектирования магистральных газопроводов. URL: https://gostinform.ru/proizvodstvenno-otraslevye-standarty/sto-gazprom-2-3-5-051-2006-obj55852.html (дата обращения: 15.02.2023).

Рид Р., Праусниц Дж., Шервуд Т. Свойства газов и жидкостей / пер. с англ.; под ред. Б. И. Соколова. Л.: Химия, 1982. 592 с.

References

Kuzema A. V., Chunosov O. F., Sharokhin V. Yu., Gurin A. I., Markov F. S., Sadrtdinov R. A., Khokhlov A. N., Akimov N. N., Bukhvalov I. R., Yevseyev S. V. Innovatsionnye razrabotki, povyshaiushchie nadezhnost' i bezopasnost' ekspluatatsii magistral'nykh gazoprovodov posredstvom primeneniia podsistemy obnaruzheniia neshtatnykh sobytii [Innovative developments that increase the reliability and safety of operation of main gas pipelines through the use of a subsystem for detecting abnormal events]. Gazovaia promyshlennost' [ Gas industry ], 2022, Spetsvypusk no. 1(829), pp. 32-40. (In Russian)

Lapteva T. I., Mansurov M. N., Shabarchina M. V., Kim S. D., Kopayeva L. A. Ekspluatatsionnaia nadezhnost' morskikh truboprovodov v slozhnykh inzhenerno-geologicheskikh usloviiakh kontinental'nogo shel'fa Rossii [Operational reliability of offshore pipelines in complex engineering geological conditions of the Russian continental shelf]. Bezopasnost' truda v promyshlennosti [ Labor safety in industry ], 2018, no. 1, pp. 30-34. (In Russian)

Thiberville C., Wang Y., Waltrich P., Williams W., Kam S. I. Modeling of smart pigging for pipeline leak detection: From mathematical formulation to large-scale application. SPE Gas & Oil Technology Showcase and Conference. October 21-23, 2019. Dubai, UAE, Society of Petroleum Engineers Publ., 2019, pp. 1-27. https://doi.org/10.2118/198648-MS

Kurbatova G., Klemeshev V., Philippov V. Calculation of depressurization coordinate in underground and offshore gas pipelines. J. Phys. Conf. Ser., 2022, vol. 2162, no. 012023. https://doi.org/10.1088/1742-6596/2162/1/012023

Kurbatova G. I., Klemeshev V. A. Mathematical apparatus for detecting leakage in gas pipelines. Math. Models Comput. Simul., 2022, vol. 14, iss. 2, pp. 203-212. https://doi.org/10.1134/S2070048222020090

Suleymanov V. A. Nekotorye voprosy termodinamiki protsessa truboprovodnogo transporta prirodnogo gaza [Some issues of thermodynamics of the process of pipeline transport of natural gas]. Povyshenie nadezhnosti i bezopasnosti ob"ektov gazovoi promyshlennosti [ Improving the reliability and safety of gas industry facilities ], 2022, no. 2(51), pp. 29-45. (In Russian)

Kurbatova G. I., Ermolaeva N. N., Filippov V. B., Filippov K. B. Proektirovanie gazoprovodov v severnykh moriakh [ Design of gas pipelines in the northern seas ]. St. Petersburg, Lan' Publ., 2020, 352 p. (In Russian)

Datchiki temperatury i davleniia ot NPO "Vakuummash" [Temperature and pressure sensors from NPO "Vakuummash"]. SFERA. Neft' i gaz [ SPHERE. Oil and gas ], 2022, no. 2(85), pp. 74-76. (In Russian)

Solomichev R. I., Solomicheva S. V. Sistema samodiagnostiki ul'trazvukovykh raskhodomerov kak funktsiia kontrolia uzla ucheta gaza v ekspluatatsii [Self-diagnosis system of ultrasonic flowmeters as a function of gas metering unit control in operation]. SFERA. Neft' i gaz [ SPHERE. Oil and gas ], 2022, no. 4(87), pp. 40-46. (In Russian)

Kurbatova G. I., Vinogradova E. M., Klemeshev V. A. Analiz uproshchennykh modelei transportirovki gaza. Raschet mestopolozheniia utechki gaza v truboprovode [Analysis of simplified gas transportation models. Calculation of the gas leak location in a pipeline]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2022, vol. 18, iss. 2, pp. 239-252. https://doi.org/10.21638/11701/spbu10.2022.205 (In Russian)

Kurbatova G. I., Klemeshev V. A., Egorov N. V. Estimation of possibilities of calculations based on simplified models of the leak location in gas pipelines. Technical Physics, 2022, vol. 67, iss. 10, pp. 1309-1315. https://doi.org/10.21883/TP.2022.10.54357.119-22

Vasilev O. F., Bondarev E. A., Voevodin A. F., Kanibolotskii M. A. Neizotermicheskoe techenie gaza v trubakh [ Non-isothermal gas flow in pipes ]. Novosibirsk, Nauka Publ., 1978, 128 p. (In Russian)

Spravochnik gosudarstvennykh standartov. Bol'shaia baza GOSTov, SNiPov : STO Gazprom 2-3.5-051-2006. Normy tekhnologicheskogo proektirovaniia magistral'nykh gazoprovodov [ Reference book of state standards. Large database of GOSTs, SNiPs : STO Gazprom 2-3.5-051-2006. Norms of technological design of main gas pipelines ]. Available at: https://gostinform.ru/proizvodstvenno-otraslevye-standarty/sto-gazprom-2-3-5-051-2006-obj55852.html (accessed: February 15, 2023). (In Russian)

Reid R., Prausnitz J., Sherwood T. The properties of gases and liquids. New York, McGraw-Hill Inc. Publ., 1977, 548 p. (Rus. ed.: Reid R., Prausnitz J., Sherwood T. Svoistva gazov i zhidkostei . Leningrad, Chemistry Publ., 1982, 592 p.)

Published

2023-07-27

How to Cite

Kurbatova, G. I., & Klemeshev, V. A. (2023). Identification of low and medium intensity gas leakage location in medium and ultra-high pressure gas pipelines. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 19(2), 218–232. https://doi.org/10.21638/11701/spbu10.2023.208

Issue

Section

Computer Science