Mathematical methods for analyzing the results of investigation of dielectric

Authors

  • Nikolay V. Egorov St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation
  • Andrey G. Karpov St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation
  • Sergey P. Sobolev St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/11701/spbu10.2023.207

Abstract

One of the most informative methods for studying dielectric materials is the analysis of their polarization and depolarization processes. The most suitable representation is the dielectric diagram in the complex plane (Argand diagram). Often, the dielectric diagram is represented as a collection of intersecting parts of circles, at least for preprocessing. The paper proposes means of modeling the dielectric diagram by means of a set of parts of circles.

Keywords:

dielectric diagram, part of a circle

Downloads

Download data is not yet available.
 

References

Литература

Hyde P. J. Wide-frequency-range dielectric spectrometer // Proceedings of IEE. 1970. Vol. 117. N 9. P. 1891-1901.

Алмазов А. А., Егоров Н. В., Резников М. А. Микропроцессорная система релаксационной хронометрии диэлектриков // Методы и средства диагностики несущей способности изделий из композитов: Практика создания и применения / oтв. ред. В. А. Латишенко. Рига: Зинатне, 1991. Т. 2. С. 125-131.

Karpov A. G., Egorov N. V. Automated dielectrometer // Приборы и техника эксперимента. 1999. № 6. С. 63-67.

Карпов А. Г., Клемешев В. А. Диагностика диэлектрических материалов с несколькими группами времен релаксации // Журн. технич. физики. 2018. Т. 88. № 4. С. 634-637.

Macdonald J. R., Schoonman J., Lehnen A. P. The applicability and power of complex nonlinear least squares for analysis of impedance and admittance data // J. Electroanal. Chem. 1982. Vol. 131. P. 77-83.

Noble B. Applied linear algebra. Prentice-Hall: Englewood Cliffs, 1969. 186 p.

References

Hyde P. J. Wide-frequency-range dielectric spectrometer. Proceedings IEE, 1970, vol. 117, no. 9, pp. 1891-1901.

Almazov A. A., Egorov N. V., Reznikov M. A. Mikroprotsessornaia sistema relaksatsionnoi khronometrii dielektrikov [The microprocessor system chronometry dielectric relaxation]. Metody i sredstva diagnostiki nesushchei sposobnosti izdelii iz kompozitov: Praktika sozdaniia i primeneniia [ Methods and means of diagnosis of bearing capacity of composite products: Creating and using practice ]. Riga, Zinatne Publ., 1991, vol. 2, pp. 125-131. (In Russian)

Karpov A. G., Egorov N. V. Automated dielectrometer. Pribory i tekhnika eksperimenta [ Instruments and technology of experiments ], 1999, no. 6, pp. 63-67.

Karpov A. G., Klemeshev V. A. Diagnostika dielektricheskikh materialov s neskol'kimi gruppami vremen relaksatsii [The diagnosis of dielectric matrials with number of relaxation times]. Journal of Technical Physics, 2018, vol. 88, no. 4, pp. 634-637. (In Russian)

Macdonald J. R., Schoonman J., Lehnen A. P. The applicability and power of complex nonlinear least squares for analysis of impedance and admittance data. J. Electroanal. Chem., 1982, vol. 131, pp. 77-83.

Noble B. Applied linear algebra. Prentice-Hall, Englewood Cliffs Publ., 1969, 186 p.

Published

2023-07-27

How to Cite

Egorov, N. V., Karpov, A. G., & Sobolev, S. P. (2023). Mathematical methods for analyzing the results of investigation of dielectric. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 19(2), 212–217. https://doi.org/10.21638/11701/spbu10.2023.207

Issue

Section

Computer Science