Razumikhin approach in the generalized Myshkis problem for systems with distributed delay

Authors

  • Alexey V. Egorov St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/11701/spbu10.2023.202

Abstract

The paper gives sufficient conditions for the solvability of the generalized Myshkis problem for a system of equations with a distributed time-varying delay and a constant kernel. Conditions on the kernel which guarantee the uniform stability of the system for any admissible delay are obtained. The admissible delay in this paper is a piecewise continuous function bounded from above in magnitude and growth rate. The applicability of the obtained conditions is illustrated by two examples.

Keywords:

time-delay system, stability, distributed delay, generalized Myshkis problem, Razumikhin approach

Downloads

Download data is not yet available.
 

References

Литература

Мышкис А. Д. О решениях линейных однородных дифференциальных уравнений первого порядка устойчивого типа с запаздывающим аргументом // Математический сборник. 1951. Вып. 28. № 3. С. 641-658.

Yorke J. A. Asymptotic stability for one dimensional differential-delay equations // Journal of Differential Equations. 1970. Vol. 7. P. 189-202.

Yoneyama T. The 3/2 stability theorem for one-dimensional delay-differential equations with unbounded delay // Journal of Mathematical Analysis and Applications. 1992. Vol. 165. P. 133-143.

Amemiya T. On the delay-independent stability of a delayed differential equation of 1st order // Journal of Mathematical Analysis and Applications. 1989. Vol. 142. P. 13-25.

Малыгина В. В. Об устойчивости решений некоторых линейных дифференциальных уравнений с последействием // Известия высших учебных заведений. Математика. 1993. Вып. 5. С. 72-85.

Krisztin T. On stability properties for one-dimensional functional differential equations // Funkcialaj Ekvacioj. 1991. Vol. 34. P. 241-256.

Малыгина В. В. О точных границах области устойчивости линейных дифференциальных уравнений с распределенным запаздыванием // Известия высших учебных заведений. Математика. 2008. Вып. 52. № 7. С. 15-23.

Egorov A. On the stability analysis of equations with bounded time-varying delay // 15th IFAC Workshop on Time Delay Systems. Sinaia, Romania, 2019. P. 85-90.

Egorov A. The generalized Myshkis problem for a linear time-delay system with time-varying delay // Stability and Control Processes (SCP 2020), Lecture Notes in Control and Information Sciences - Proceedings / eds.: N. Smirnov, A. Golovkina. Cham, Switzerland: Springer, 2022. P. 223-231.

Egorov A. Robust stability analysis of time-varying delay systems // 17th IFAC Workshop on Time Delay Systems. Montreal, Canada, 2022. P. 210-215.

Fridman E. An improved stabilization method for linear time-delay systems // IEEE Transactions on Automatic Control. 2002. Vol. 47. N 11. P. 1931-1937.

Wu M., He Y., She J.-H., Liu G.-P. Delay-dependent criteria for robust stability of time-varying delay systems // Automatica. 2004. Vol. 40. P. 1435-1439.

Zhang C.-K., He Y., Jiang L., Wu M., Zeng H.-B. Stability analysis of systems with time-varying delay via relaxed integral inequalities // Systems & Control Letters. 2016. Vol. 92. P. 52-61.

Kolmanovskii V., Myshkis A. Introduction to the theory and applications of functional differential equations. Dordrecht, Netherlands: Springer Science + Business Media, 1999. 648 p.

Сабатулина Т. Л. Об экспоненциальной устойчивости дифференциального уравнения с комплексным коэффициентом и переменным распределенным запаздыванием // Теория управления и математическое моделирование. Ижевск, 2022. С. 119-121.

References

Myshkis A. D. O resheniiakh lineinykh odnorodnykh differentsial'nykh uravnenii pervogo poriadka ustoichivogo tipa s zapazdyvaiushchim argumentom [On solutions of linear homogeneous differential equations of the first order of stable type with a retarded argument]. Matematicheskii sbornik [ Mathematical Collection ], 1951, iss. 28, no. 3, pp. 641-658. (In Russian)

Yorke J. A. Asymptotic stability for one dimensional differential-delay equations. Journal of Differential Equations, 1970, vol. 7, pp. 189-202.

Yoneyama T. The 3/2 stability theorem for one-dimensional delay-differential equations with unbounded delay. Journal of Mathematical Analysis and Applications, 1992, vol. 165, pp. 133-143.

Amemiya T. On the delay-independent stability of a delayed differential equation of 1st order. Journal of Mathematical Analysis and Applications, 1989, vol. 142, pp. 13-25.

Malygina V. V. Ob ustoichivosti reshenii nekotorykh lineinykh differentsial'nykh uravnenii s posledeistviem [On stability of solutions of some linear differential equations with aftereffect]. Izvestiia vysshikh uchebnykh zavedenii. Matematika [ Russian Mathematics ], 1993, iss. 5, pp. 72-85. (In Russian)

Krisztin T. On stability properties for one-dimensional functional differential equations. Funkcialaj Ekvacioj, 1991, vol. 34, pp. 241-256.

Malygina V. V. O tochnykh granitsakh oblasti ustoichivosti lineinykh differentsial'nykh uravnenii s raspredelennym zapazdyvaniem [On the exact boundaries of the stability domain of linear differential equations with distributed delay]. Izvestiia vysshikh uchebnykh zavedenii. Matematika [ Russian Mathematics ], 2008, iss. 52, no. 7, pp. 15-23. (In Russian)

Egorov A. On the stability analysis of equations with bounded time-varying delay. 15th IFAC Workshop on Time Delay Systems. Sinaia, Romania, 2019, pp. 85-90.

Egorov A. The generalized Myshkis problem for a linear time-delay system with time-varying delay. Stability and Control Processes (SCP 2020), Lecture Notes in Control and Information Sciences - Proceedings. Eds N. Smirnov, A. Golovkina. Cham, Switzerland, Springer Publ., 2022, pp. 223-231.

Egorov A. Robust stability analysis of time-varying delay systems. 17th IFAC Workshop on Time Delay Systems. Montreal, Canada, 2022, pp. 210-215.

Fridman E. An improved stabilization method for linear time-delay systems. IEEE Transactions on Automatic Control, 2002, vol. 47, no. 11, pp. 1931-1937.

Wu M., He Y., She J.-H., Liu G.-P. Delay-dependent criteria for robust stability of time-varying delay systems. Automatica, 2004, vol. 40, pp. 1435-1439.

Zhang C.-K., He Y., Jiang L., Wu M., Zeng H.-B. Stability analysis of systems with time-varying delay via relaxed integral inequalities. Systems & Control Letters, 2016, vol. 92, pp. 52-61.

Kolmanovskii V., Myshkis A. Introduction to the theory and applications of functional differential equations. Dordrecht, Netherlands, Springer Science + Business Media Publ., 1999, 648 p.

Sabatulina T. L. Ob eksponentsial'noi ustoichivosti differentsial'nogo uravneniia s kompleksnym koeffitsientom i peremennym raspredelennym zapazdyvaniem [On the exponential stability of a differential equation with complex coefficient and time-varying distributed delay]. Teoriia upravleniia i matematicheskoe modelirovanie [ Theory of management and mathematical modeling ]. Izhevsk, 2022, pp. 119-121. (In Russian)

Published

2023-07-27

How to Cite

Egorov, A. V. (2023). Razumikhin approach in the generalized Myshkis problem for systems with distributed delay. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 19(2), 148–161. https://doi.org/10.21638/11701/spbu10.2023.202

Issue

Section

Applied Mathematics