Method for solving an optimal control problem in the Mayer form with a quasidifferentiable functional in the presence of phase constraints

Authors

  • Alexander V. Fominyh St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-0178-8384
  • Vladimir V. Karelin St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation
  • Lyudmila N. Polyakova St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/11701/spbu10.2023.110

Abstract

The article considers the problem of optimal control of an object described by a system of ordinary differential equations with a continuously differentiable right-hand side and with a nonsmooth (but only a quasidifferentiable) quality functional. The problem is in the Mayer form with either free or partially fixed right end. Piecewise-continuous and bounded controls are supposed to be admissible if they lie in some parallelepiped at any moment of time. The phase coordinates and controls are also subject to mixed pointwise constraints. Phase constraints are taken into account by introducing new variables with known boundary conditions into the system. The standard discretization of the original system and the parametrization of the control are carried out, theorems are given on the convergence of the solution of the discrete system obtained to the desired solution of the continuous problem. Further, in order to study the resulting discrete system, the apparatus of quasidifferential calculus is used and the method of the quasidifferential descent is applied. Examples illustrating the operation of the algorithm are given.

Keywords:

optimal control, Mayer problem, nonsmooth optimization, quasidifferential, phase constraints

Downloads

Download data is not yet available.
 

References

Литература

Jiang C., Lin Q., Yu C., Teo K. L. An exact penalty method for free terminal time optimal control problem with continuous inequality constraints // Journal of Optim. Theory Appl. 2012. Vol. 154. P. 30-53.

Моисеев Н. Н. Элементы теории оптимальных систем. М.: Наука, 1976. 526 с.

Loxton R. C., Teo K. L., Rehbock V., Yiu K. F. C. Optimal control problems with a continuous inequality constraint on the state and the control // Automatica. 2009. Vol. 45. Iss. 10. P. 2250-2257.

Rosen J. B. Iterative solution of nonlinear optimal control // J. SIAM Control. 1966. Vol. 4. N 1. P. 223-244.

Bryson A. E., Denham W. F. Optimal programming problems with inequality constraints. II: Solution by steepest-ascent // AIAA Journal. 1964. Vol. 2. Iss. 1. P. 25-34.

Lasdon L. S., Waren A. D., Rice R. K. An interior penalty method for inequality constrained optimal control problems // IEEE Transactions on Automatic Control. 1967. Vol. 12. N 4. P. 388-395.

Miele A., Cloutier J. R., Mohanty B. P., Wu A. K. Sequential conjugate gradient-restoration algorithm for optimal control problems with nondifferential constraints. Pt I // International Journal of Control. 1979. Vol. 2. N 2. P. 189-211.

Berkovitz L. D. Variational methods in problems of control and programming // Journal of Mathematical Analysis and Applications. 1961. Vol. 3. P. 145-169.

Gorelik V. A., Tarakanov A. F. Penalty method and maximum principle for nonsmooth variable-structure control problems // Cybernetics and Systems Analysis. 1992. Vol. 28. Iss. 3. P. 432-437.

Morzhin O. V. On approximation of the subdifferential of the nonsmooth penalty functional in the problems of optimal control // Automation and Remote Control. 2009. N 70. P. 761-771.

Mayne D. Q., Smith S. Exact penalty algorithm for optimal control problems with control and terminal constraints // International Journal of Control. 1988. Vol. 48. N 1. P. 257-271.

Noori Skandari M. H., Kamyad A. V., Effati S. Smoothing approach for a class of nonsmooth optimal control problems // Applied Mathematical Modelling. 2015. Vol. 40. N 2. P. 886-903.

Демьянов В. Ф., Рубинов А. М. Основы негладкого анализа и квазидифференциальное исчисление. М.: Наука, 1990. 432 с.

Teo K. L., Goh C. J., Wong K. H. A unified computational approach to optimal control problems. New York: Longman Scientific and Technical, 1991. 329 p. (Pitman Monographs and Surveys in Pure and Applied Mathematics.)

Jazwinski A. H. Optimal trajectories and linear control of nonlinear systems // AIAA Journal. 1964. Vol. 2. N 8. P. 1371-1379.

Fominyh A. V. The subdifferential descent method in a nonsmooth variational problem // Optimization Letters. 2022 (in print). https://doi.org/10.1007/s11590-022-01897-3

Фоминых А. В., Карелин В. В., Полякова Л. Н., Мышков С. К., Трегубов В. П. Метод кодифференциального спуска в задаче нахождения глобального минимума кусочно-аффинного целевого функционала в линейных системах управления // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2021. Т. 17. Вып. 1. С. 47-58. https://doi.org/10.21638/11701/spbu10.2021.105

Fominyh A. V. The quasidifferential descent method in a control problem with nonsmooth objective functional // Optimization Letters. 2021. Vol. 15. Iss. 8. P. 2773-2792.

Fominyh A. V. Open-loop control of a plant described by a system with nonsmooth right-hand side // Computational Mathematics and Mathematical Physics. 2019. Vol. 59. N 10. P. 1639-1648.

Filippov A. F. On certain questions in the theory of optimal control // J. SIAM Control Ser. A 1. 1962. Vol. 1. N 1. P. 76-84.

Васильев Ф. П. Методы оптимизации. М.: Факториал Пресс, 2002. 824 с.

Peressini A. L., Sullivan F. E., Uhl J. J. The mathematics of nonlinear programming. New York: Springer, 1988. 276 p.

Dolgopolik M. V. A unifying theory of exactness of linear penalty functions // Optimization. 2015. Vol. 65. N 6. P. 1167-1202.

Демьянов В. Ф. Условия экстремума и вариационное исчисление. М.: Высшая школа, 2005. 335 с.

Byrd R. H., Nocedal J., Waltz R. A. Steering exact penalty methods for nonlinear programming // Optimization Methods and Software. 2008. Vol. 23. N 2. P. 197-213.

Wolfe P. The simplex method for quadratic programming // Econom. 1959. Vol. 27. P. 382-398.

Васильев Л. В., Демьянов В. Ф. Недифференцируемая оптимизация. М.: Наука, 1981. 384 с.

Демьянов В. Ф., Малозёмов В. Н. Введение в минимакс. М.: Наука, 1972. 368 с.

Dolgopolik M. V. A convergence analysis of the method of codifferential descent // Computational Optimization and Applications. 2018. Vol. 71. N 3. P. 879-913.

Крылов И. А. Численное решение задачи об оптимальной стабилизации спутника // Журн. вычисл. математики и матем. физики. 1968. Т. 8. № 1. С. 203-208.

References

Jiang C., Lin Q., Yu C., Teo K. L. An exact penalty method for free terminal time optimal control problem with continuous inequality constraints. Journal of Optim. Theory Appl., 2012, vol. 154, pp. 30-53.

Moiseev N. N. Jelementy teorii optimal'nyh sistem [ Elements of the optimal systems theory ]. Moscow, Nauka Publ., 1976, 526 p. (In Russian)

Loxton R. C., Teo K. L., Rehbock V., Yiu K. F. C. Optimal control problems with a continuous inequality constraint on the state and the control. Automatica, 2009, vol. 45, iss. 10, pp. 2250-2257.

Rosen J. B. Iterative solution of nonlinear optimal control. J. SIAM Control, 1966, vol. 4, no. 1, pp. 223-244.

Bryson A. E., Denham W. F. Optimal programming problems with inequality constraints. II. Solution by steepest-ascent. AIAA Journal, 1964, vol. 2, iss. 1, pp. 25-34.

Lasdon L. S., Waren A. D., Rice R. K. An interior penalty method for inequality constrained optimal control problems. IEEE Transactions on Automatic Control, 1967, vol. 12, no. 4, pp. 388-395.

Miele A., Cloutier J. R., Mohanty B. P., Wu A. K. Sequential conjugate gradient-restoration algorithm for optimal control problems with nondifferential constraints. Pt I. International Journal of Control, 1979, vol. 2, no. 2, pp. 189-211.

Berkovitz L. D. Variational methods in problems of control and programming. Journal of Mathematical Analysis and Applications, 1961, vol. 3, pp. 145-169.

Gorelik V. A., Tarakanov A. F. Penalty method and maximum principle for nonsmooth variable-structure control problems. Cybernetics and Systems Analysis, 1992, vol. 28, iss. 3, pp. 432-437.

Morzhin O. V. On approximation of the subdifferential of the nonsmooth penalty functional in the problems of optimal control. Automation and Remote Control, 2009, no. 70, pp. 761-771.

Mayne D. Q., Smith S. Exact penalty algorithm for optimal control problems with control and terminal constraints. International Journal of Control, 1988, vol. 48, no. 1, pp. 257-271.

Noori Skandari M. H., Kamyad A. V., Effati S. Smoothing approach for a class of nonsmooth optimal control problems. Applied Mathematical Modelling, 2015, vol. 40, no. 2, pp. 886-903.

Demyanov V. F., Rubinov A. M. Osnovy negladkogo analiza i kvazidifferencial'noe ischislenie [ Basics of nonsmooth analysis and quasidifferential calculus ]. Moscow, Nauka Publ., 1990, 432 p. (In Russian)

Teo K. L., Goh C. J., Wong K. H. A unified computational approach to optimal control problems. New York, Longman Scientific and Technical Publ., 1991, 329 p. (Pitman Monographs and Surveys in Pure and Applied Mathematics.)

Jazwinski A. H. Optimal trajectories and linear control of nonlinear systems. AIAA Journal, 1964, vol. 2, no. 8, pp. 1371-1379.

Fominyh A. V. The subdifferential descent method in a nonsmooth variational problem. Optimization Letters, 2022 (in print). https://doi.org/10.1007/s11590-022-01897-3

Fominyh A. V., Karelin V. V., Polyakova L. N., Myshkov S. K., Tregubov V. P. Metod kodifferentsial'nogo spuska v zadache nakhozhdeniia global'nogo minimuma kusochno-affinnogo tselevogo funktsionala v lineinykh sistemakh upravleniia [The codifferential descent method in the problem of finding the global minimum of a piecewise affine objective functional in linear control systems]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2021, vol. 17, iss. 1, pp. 47-58. https://doi.org/10.21638/11701/spbu10.2021.105 (In Russian)

Fominyh A. V. The quasidifferential descent method in a control problem with nonsmooth objective functional. Optimization Letters, 2021, vol. 15, iss. 8. pp. 2773-2792.

Fominyh A. V. Open-loop control of a plant described by a system with nonsmooth right-hand side. Computational Mathematics and Mathematical Physics, 2019, vol. 59, no. 10, pp. 1639-1648.

Filippov A. F. On certain questions in the theory of optimal control. J. SIAM Control Ser. A 1, 1962, vol. 1, no. 1, pp. 76-84.

Vasil'ev F. P. Metody optimizatsii [ Optimization methods ]. Moscow, Faktorial Press, 2002, 824 p. (In Russian)

Peressini A. L., Sullivan F. E., Uhl J. J. The mathematics of nonlinear programming. New York, Springer Publ., 1988, 276 p.

Dolgopolik M. V. A unifying theory of exactness of linear

penalty functions. Optimization, 2015, vol. 65, no. 6, pp. 1167-1202.

Demyanov V. F. Uslovija jekstremuma i variacionnoe ischislenie [ Extremum conditions and variational calculus ]. Moscow, Vysshaya shkola Publ., 2005, 335 p. (In Russian)

Byrd R. H., Nocedal J., Waltz R. A. Steering exact penalty methods for nonlinear programming. Optimization Methods and Software, 2008, vol. 23, no. 2, pp. 197-213.

Wolfe P. The simplex method for quadratic programming. Econom., 1959, vol. 27, pp. 382-398.

Vasil'ev L. V., Demyanov V. F. Nedifferenciruemaja optimizacija [ Nondifferentiable optimization ]. Moscow, Nauka Publ., 1981, 384 p. (In Russian)

Demyanov V. F., Malozemov V. N. Vvedenie v minimaks [ Introduction to minimax ]. Moscow, Nauka Publ., 1972, 368 p. (In Russian)

Dolgopolik M. V. A convergence analysis of the method of codifferential descent. Computational Optimization and Applications, 2018, vol. 71, no. 3, pp. 879-913.

Krylov I. A. Chislennoe reshenie zadachi ob optimal'noj stabilizacii sputnika [Numerical solution of the problem of the optimal stabilization of an artificial satellite]. USSR Comput. Math. Math. Phys., 1968, vol. 8, no. 1, pp. 203-208. (in Russian)

Published

2023-04-27

How to Cite

Fominyh, A. V., Karelin, V. V., & Polyakova, L. N. (2023). Method for solving an optimal control problem in the Mayer form with a quasidifferentiable functional in the presence of phase constraints. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 19(1), 120–134. https://doi.org/10.21638/11701/spbu10.2023.110

Issue

Section

Control Processes