The choice of the data transmission method during the study of improving the reliability and ensuring safe operation of products
DOI:
https://doi.org/10.21638/spbu10.2024.207Abstract
The purpose of this work is to choose the most optimal method of data transmission for conducting research on improving the reliability and ensuring safe operation of products obtained by 3D printing, operated at low temperatures. This is very important, since any error that occurs when transmitting the results of the study is fraught with further inaccuracies, and, subsequently, possibly human lives or environmental and economic disasters. The article describes the main methods of data transmission suitable for this case. Their advantages and disadvantages, possible problems when deploying networks in production or when scaling the experiment are analyzed in detail. Further, a comparison of each method is made by assigning estimates for the required groups of indicators. Based on the results of the comparison, conclusions were drawn about the best way to transfer data for this study, which may be useful in carrying out further work, as well as in similar studies in the future.
Keywords:
data transmission, 3D-printing, Wi-Fi, RFID, Bluetooth
Downloads
References
Кабалдин Ю. Г., Аносов М. С., Шатагин Д. А., Колчин П. В. Получение хладостойких металлов наномодифицированием при 3D-печати электродуговой наплавкой с использованием квантово-механического и нейросетевого моделирования // Вестник машиностроения. 2022. № 9. C. 75–80. https://doi.org/10.36652/0042-4633-2022-9-75-80
Кабалдин Ю. Г., Аносов М. С., Шатагин Д. А., Колчин П. В., Желонкин М. В., Рябов Д. А. Failure of metals produced by additive arc surfacing: Neural network analysis // Russian Engineering Research. 2022. Vol. 42. N 11. P. 1164–1169. https://doi.org/10.3103/S1068798X22110119
Mannah M. A., Ginot N., Batard C. Effect of the power cable on data transmission over a pulsewidth-modulated network // IEEE Transactions on Industrial Electronics. 2014. Vol. 61. N 8. P. 4238–4245. https://doi.org/10.1109/TIE.2013.2288189
Wu H., Jiao C., Cui X. Study on coupling of very fast transients to secondary cable via a test platform // IEEE Transactions on Electromagnetic Compatibility. 2018. Vol. 60. N 5. P. 1366–1375. https://doi.org/10.1109/TEMC.2017.2761998
Фаустов И. С., Токарев А. Б., Сладких В. А., Козьмин В. А., Крыжко И. Б. Радиоконтроль служебных параметров сигнала Bluetooth // Системы управления, связи и безопасности. 2021. № 3. C. 135–151. https://doi.org/10.24412/2410-9916-2021-3-135-151
Sakkopoulos E., Ioannou Z.-M., Viennas E. Personalized data minimization assurance using Bluetooth low energy // Advanced Sciences and Technologies for Security Applications. 2020. P. 41–58. https://doi.org/10.1007/978-3-030-39489-9_3
Hasan M. M., Faruque M. R. I., Islam M. T. Dual band metamaterial antenna for LTE/Bluetooth/WiMAX system // Scientific Reports. 2018. N 8. Р. 1240. https://doi.org/10.1038/s41598-018-19705-3
Qazi R. , Parker K. E., Kim C. Y., Rill R., Norris M. R., Chung J., Bilbily J., Kim J. R., Walicki M. C., Gereau G. B., Lim H., Xiong Y., Lee J. R., Tapia M. A., Kravitz A. V., Will M. J., Ha S., McCall J. G., Jeong J.-W. Scalable and modular wireless-network infrastructure for large-scale behavioural neuroscience // Natural Biomedical Engineering. 2022. N 6. Р. 771–786. https://doi.org/10.1038/s41551-021-00814-w
Huang Z., Hao Y., Li Y. Three-dimensional integrated stretchable electronics // Natural Electronics. 2018. N 1. Р. 473–480. https://doi.org/10.1038/s41928-018-0116-y
Albazrqaoe W., Huang J., Xing G. A practical Bluetooth traffic sniffing system: design, implementation, and countermeasure // IEEE/ACM Transactions on Networking. 2019. Vol. 27. N 1. P. 71–84. https://doi.org/10.1109/TNET.2018.2880970
Сушко А. Д., Фунтов Д. А., Матюшов Д. А., Аль-Ханани М. А., Родыгина И. В. Сравнительный анализ современных технологий передачи данных // Эксплуатация морского транспорта. 2019. № 2 (91). C. 114–119. https://doi.org/10.34046/aumsuomt91/19
Мизаев М. М., Назаева М. И., Мурзаев Х. А. Принципы работы сети Wi-Fi // Вопросы устойчивого развития общества. 2020. № 7. C. 229–233. https://doi.org/10.34755/IROK.2020.36.52.188
Koelemeij J. C. J., Dun H., Diouf C. E. V. A hybrid optical-wireless network for decimetre-level terrestrial positioning // Nature. 2022. N 611. P. 473–478. https://doi.org/10.1038/s41586-022-05315-7
Jiang Z. Eliminating the barriers: demystifying Wi-Fi baseband design and introducing the picoscenes Wi-Fi sensing platform // IEEE Internet of Things Journal. 2022. Vol. 9. N 6. P. 4476–4496. https://doi.org/10.1109/JIOT.2021.3104666
Wang W., Chen Y., Wang L., Zhang Q. Sampleless Wi-Fi: Bringing low power to Wi-Fi communications // IEEE/ACM Transactions on Networking. 2017. Vol. 25. N 3. P. 1663–1672. https://doi.org/10.1109/TNET.2016.2643160
Zhang J., Lyu Y., Patton J., Periaswamy S. C. G., Roppel T. BFVP: A probabilistic UHF RFID tag localization algorithm using bayesian filter and a variable power RFID model // IEEE Transactions on Industrial Electronics. 2018. Vol. 65. N 10. P. 8250–8259. https://doi.org/10.1109/TIE.2018.2803720
Khadka G., Arefin M. S., Karmakar N. C. Using punctured convolution coding (PCC) for error correction in chipless RFID tag measurement // IEEE Microwave and Wireless Components Letters. 2020. Vol. 30. N 7. P. 701–704. https://doi.org/10.1109/LMWC.2020.2994189
Barbot N., Rance O., Perret E. Classical RFID versus chipless RFID read range: Is linearity a friend or a foe? // IEEE Transactions on Microwave Theory and Techniques. 2021. Vol. 69. N 9. P. 4199–4208. https://doi.org/10.1109/TMTT.2021.3077019
Dobrykh D., Yusupov I., Ginzburg P. Self-aligning roly-poly RFID-tag // Scientific Reports. 2022. N 12. P. 2140. https://doi.org/10.1038/s41598-022-06061-6
Zhu W., Cao J., Xu Y., Yang L., Kong J. Fault-tolerant RFID-reader localization based on passive RFID-tags // IEEE Transactions on Parallel and Distributed Systems. 2014. Vol. 25. N 8. P. 2065–2076. https://doi.org/10.1109/TPDS.2013.217
References
Kabaldin Yu. G., Anosov M. S., Shatagin D. A., Kolchin P. V. Poluchenie hladostojkih metallov nanomodificirovaniem pri 3D-pechati elektrodugovoj naplavkoj s ispol'zovaniem kvantovo-mekhanicheskogo i nejrosetevogo modelirovaniya [Production of gold-resistant metals by nanomodification in printing by electric arc welding using quantum mechanical and neural network modeling]. Vestnik of Machine-building, 2022, no. 9, pp. 75–80. https://doi.org/10.36652/0042-4633-2022-9-75-80 (In Russian)
Kabaldin Yu. G., Anosov M. S., Shatagin D. A., Kolchin P. V., Zhelonkin M. V., Ryabov D. A. Failure of metals produced by additive arc surfacing: Neural network analysis. Russian Engineering Research, 2022, vol. 42, no. 11, pp. 1164–1169. https://doi.org/10.3103/S1068798X22110119
Mannah M. A., Ginot N., Batard C. Effect of the power cable on data transmission over a pulsewidth-modulated network. IEEE Transactions on Industrial Electronics, 2014, vol. 61, no. 8, pp. 4238–4245. https://doi.org/10.1109/TIE.2013.2288189
Wu H., Jiao C., Cui X. Study on coupling of very fast transients to secondary cable via a test platform. IEEE Transactions on Electromagnetic Compatibility, 2018, vol. 60, no. 5, pp. 1366–1375. https://doi.org/10.1109/TEMC.2017.2761998
Faustov I. S., Tokarev A. B., Sladkih V. A., Koz'min V. A., Kryzhko I. B. Radiokontrol' sluzhebnyh parametrov signala Bluetooth [Radio monitoring of Bluetooth signals service parameters]. Systems of Control, Communication and Security, 2021, no. 3, pp. 135–151. https://doi.org/10.24412/2410-9916-2021-3-135-151 (In Russian) pagebreak
Sakkopoulos E., Ioannou Z.-M., Viennas E. Personalized data minimization assurance using Bluetooth low energy. Advanced Sciences and Technologies for Security Applications, 2020, pp. 41–58. https://doi.org/10.1007/978-3-030-39489-9_3
Hasan M. M., Faruque M. R. I., Islam M. T. Dual band metamaterial antenna for LTE/ Bluetooth/WiMAX system. Scientific Reports, 2018, no. 8, р. 1240. https://doi.org/10.1038/s41598-018-19705-3
Qazi R., Parker K. E., Kim C. Y., Rill R., Norris M. R., Chung J., Bilbily J., Kim J. R., Walicki M. C., Gereau G. B., Lim H., Xiong Y., Lee J. R., Tapia M. A., Kravitz A. V., Will M. J., Ha S., McCall J. G., Jeong J.-W. Scalable and modular wireless-network infrastructure for large-scale behavioural neuroscience. Nature Biomedical Engineering, 2022, no. 6, рр. 771–786. https://doi.org/10.1038/s41551-021-00814-w
Huang Z., Hao Y., Li Y. Three-dimensional integrated stretchable electronics. Nature Electronics, 2018, no. 1, рр. 473–480. https://doi.org/10.1038/s41928-018-0116-y
Albazrqaoe W., Huang J., Xing G. A practical Bluetooth traffic sniffing system: design, implementation, and countermeasure. IEEE/ACM Transactions on Networking, 2019, vol. 27, no. 1, pp. 71–84. https://doi.org/10.1109/TNET.2018.2880970
Sushko A. D., Funtov D. A., Matyushov D. A., Al'-Hanani M. A., Rodygina I. V. Sravnitel'nyj analiz sovremennyh tekhnologij peredachi dannyh [Comparative analysis of modern data transmission technologies]. Operation of Marine Transport, 2019, no. 2 (91), pp. 114–119. https://doi.org/10.34046/aumsuomt91/19 (In Russian)
Mizaev M. M., Nazaeva M. I., Murzaev H. A. Principy raboty seti Wi-Fi [How does Wi-Fi work]. Issues of Sustainable Development of Society, 2020, no. 7, pp. 229–233. https://doi.org/10.34755/IROK.2020.36.52.188 (In Russian)
Koelemeij J. C. J., Dun H., Diouf C. E. V. A hybrid optical-wireless network for decimetre-level terrestrial positioning. Nature, 2022, no. 611, pp. 473–478. https://doi.org/10.1038/s41586-022-05315-7
Jiang Z. Eliminating the barriers: demystifying Wi-Fi baseband design and introducing the picoscenes Wi-Fi sensing platform. IEEE Internet of Things Journal, 2022, vol. 9, no. 6, pp. 4476–4496. https://doi.org/10.1109/JIOT.2021.3104666
Wang W., Chen Y., Wang L., Zhang Q. Sampleless Wi-Fi: Bringing low power to Wi-Fi communications. IEEE/ACM Transactions on Networking, 2017, vol. 25, no. 3, pp. 1663–1672. https://doi.org/10.1109/TNET.2016.2643160
Zhang J., Lyu Y., Patton J., Periaswamy S. C. G., Roppel T. BFVP: A probabilistic UHF RFID tag localization algorithm using bayesian filter and a variable power RFID model. IEEE Transactions on Industrial Electronics, 2018, vol. 65, no. 10, pp. 8250–8259. https://doi.org/10.1109/TIE.2018.2803720
Khadka G., Arefin M. S., Karmakar N. C. Using punctured convolution coding (PCC) for error correction in chipless RFID tag measurement. IEEE Microwave and Wireless Components Letters, 2020, vol. 30, no. 7, pp. 701–704. https://doi.org/10.1109/LMWC.2020.2994189
Barbot N., Rance O., Perret E. Classical RFID versus chipless RFID read range: Is linearity a friend or a foe? IEEE Transactions on Microwave Theory and Techniques, 2021, vol. 69, no. 9, pp. 4199–4208. https://doi.org/10.1109/TMTT.2021.3077019
Dobrykh D., Yusupov I., Ginzburg P. Self-aligning roly-poly RFID-tag. Scientific Reports, 2022, no. 12, p. 2140. https://doi.org/10.1038/s41598-022-06061-6
Zhu W., Cao J., Xu Y., Yang L., Kong J. Fault-tolerant RFID-reader localization based on passive RFID-tags. IEEE Transactions on Parallel and Distributed Systems, 2014, vol. 25, no. 8, pp. 2065–2076. https://doi.org/10.1109/TPDS.2013.217
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.