The methods to solve some classes boundary value problems via the results in double controlled metric-like spaces

Решение некоторых классов граничных задач с помощью результатов, полученных в частично метрических пространствах с двойным контролем

Авторы

  • Низар Суая Университет короля Сауда, Саудовская Аравия, 4545, Эр-Рияд, п/я 145111; Университет Туниса, Тунис, 1938-1007, Тунис, бул. 9 апреля 1938, 92 https://orcid.org/0000-0001-8245-445X
  • Зоран Д. Митрович Университет Баня-Луки, Босния и Герцеговина, 78000, Баня-Лука, бул. воеводы Петара Бойовича, 1А https://orcid.org/0000-0001-9993-9082

DOI:

https://doi.org/10.21638/spbu10.2025.105

Аннотация

В работе представлены методы решения граничных задач второго и четвертого порядков. Доказываются несколько новых теорем о неподвижной точке в частично метрических пространствах с двойным контролем. Вводится сжимающее отображение Gζ, которое действует в том же пространстве, дополнительно снабженное графом, связывающим его элементы, и выводятся результаты о неподвижной точке этого отображения. В качестве приложения полученные результаты используются для доказательства существования решений некоторых классов граничных задач второго и четвертого порядков.

Ключевые слова:

дифференциальные уравнения, неподвижная точка, теория графов, частично метрические пространства с двойным контролем

Скачивания

Данные скачивания пока недоступны.
 

Библиографические ссылки


References

George R., Mitrović Z. D., Turab A., Savić A., Ali W. On a unique solution of a class of stochastic predator — prey models with two-choice behavior of predator animals. Symmetry, 2022, vol. 14, iss. 5, art. no. 846. https://doi.org/10.3390/sym14050846

Hui L., Jun Z., Cheng L. L. Application examples of the network fixed point theory for space-air-ground integrated communication network. International Congress on Ultra Modern Telecommunications and Control Systems (ICUMT). Moscow, Russia, 2010, pp. 989–993. https://doi.org/10.1109/ICUMT.2010.5676493

Shamanaev P. A. On the stability of the zero solution with respect to a part of variables in linear approximation. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2023, vol. 19, iss. 3, pp. 374–390. https://doi.org/10.21638/11701/spbu10.2023.306

Singh C. K., Prasad S. H., Balsara P. T. A fixed-point implementation for QR decomposition. 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software. Richardson, TX, USA, 2006, pp. 75–78. https://doi.org/10.1109/DCAS.2006.321037

Touail Y. Common fixed point results: New developments on commuting mappings and application in dynamic programming. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2024, vol. 20, iss. 3, pp. 366–375. https://doi.org/10.21638/spbu10.2024.305

Turab A., Mitrović Z. D., Savić A. Existence of solutions for a class of nonlinear boundary value problems on the hexasilinane graph. Advances in Difference Equations, 2021, no. 494, pp. 1–20.

Jung A. A fixed-point of view on gradient methods for big data. Frontiers in Applied Mathematics and Statistics, 2017, vol. 5, pp. 1–14. https://doi.org/10.3389/fams.2017.00018

Chu J., Torres P. J. Applications of Schauder's fixed point theorem to singular differential equations. Bulletin of the London Mathematical Society, 2007, vol. 39, pp. 653–660.

Faraji H., Mirkov M., Mitrović Z. D., Ramaswamy R., Abdelnaby O. A. A., Radenović S. Some new results for (α, β)-admissible mappings in F-metric spaces with applications to integral equations. Symmetry, 2022, vol. 14, art. no. 2429, pp. 1–13. https://doi.org/10.3390/sym14112429

Gupta V., Shatanawi W., Mani N. Fixed point theorems for (ψ, β)-Geraghty contraction type maps in ordered metric spaces and some applications to integral and ordinary differential equations. Journal of Fixed Point Theory and Applications, 2017, vol. 19, pp. 1251–1267. https://doi.org/10.1007/s11784-016-0303-2

Karami A., Abdullah S., Sedghi S., Mitrović Z. D. Solving existence problems via contractions in expanded b-metric spaces. The Journal of Analysis, 2022, vol. 30, no. 2, pp. 895–907.

Mani G., Gnanaprakasam A. J., Mitrović Z. D., Bota M.-F. Solving an integral equation via fuzzy triple controlled bipolar metric spaces. Mathematics, 2021, vol. 9, no. 3181, pp. 1–14. https://doi.org/10.3390/math9243181

Mebarki K., Boudaoui A., Shatanawi W., Abodayeh K., Shatnawi T. A. M. Solution of differential equations with infinite delay via coupled fixed point. Heliyon, 2022, vol. 8, iss. 2, pp. 2405–2440. https://doi.org/10.1016/j.heliyon.2022.e08849

Souayah N., Mlaiki N. A coincident point principle for two weakly compatible mappings in partial S-metric spaces. Journal of Nonlinear Science and Applications, 2016, vol. 9, pp. 2217–2223.

Souayah N., Mlaiki N., Haque S., Rizk D., Baazeem A. S., Shatanawi W. A new type of three dimensional metric spaces with applications to fractional differential equations. AIMS Mathematics, 2022, vol. 7, no. 10, pp. 17802–17814.

Caristi J. Fixed point theorems for mappings satisfying inwardness conditions. Transactions of the American Mathematical Society, 1976, vol. 215, pp. 241–251.

Fernandez J., Malviya N., Savić A., Paunović M., Mitrović Z. D. The extended cone b-metric-like spaces over Banach algebra and some applications. Mathematics, 2022, vol. 10, no. 149, pp. 1–11. https://doi.org/10.3390/math10010149

Gautam P., Sánchez R. L. M., Verma S. Fixed point of interpolative Rus — Reich — Ćirić contraction mapping on rectangular quasi-partial b-metric space. Symmetry, 2021, vol. 13, no. 32, pp. 1–8. https://doi.org/10.3390/sym13010032

George R., Mitrović Z. D., Radenović S. On some coupled fixed points of generalized T-contraction mappings in a bv(s)-metric space and its application. Axioms, 2020, vol. 9, no. 129, pp. 1–13. https://doi.org/10.3390/axioms9040129

George R., Belhenniche A., Benahmed S., Mitrović Z. D., Mlaiki N., Guran L. On an open question in controlled rectangular b-metric spaces. Mathematics, 2020, vol. 8, no. 2239, pp. 1–11. https://doi.org/10.3390/math8122239

Kiran Q., Alamgir N., Mlaiki N., Aydi H. On some new fixed point results in complete extended b-metric spaces. Mathematics, 2019, vol. 7, no. 5, art. no. 476, pp. 1–17. https://doi.org/10.3390/math7050476

Mlaiki N., Ozgur N. Y., Tacs N. New fixed-point theorems on an S-metric space via simulation functions. Mathematics, 2019, vol. 7, no. 7, art. no. 583, pp. 1–13. https://doi.org/10.3390/math7070583

Mudhesh M., Mlaiki N., Arshad M., Hussain A., Ameer E., George R., Shatanawi W. Novel results of α, ψ, X contraction multivalued mappings in F-metric spaces with an application. Journal of Inequalities and Applications, 2022, vol. 113, pp. 1–19. https://doi.org/10.1186/s13660-022-02842-9

Romaguera S., Tirado P. Characterizing complete fuzzy metric spaces via fixed point results. Mathematics, 2020, vol. 8, no. 273, pp. 1–7. https://doi.org/10.3390/math8020273

Shatanawi W. Common fixed point result for two self-maps in G-metric spaces. Matemativcki Vesnik, 2013, vol. 65, no. 2, pp. 143–150.

Souayah N., Mrad M. Some fixed point results on rectangular metric-like spaces endowed with a graph. Symmetry, 2019, vol. 11, no. 18, pp. 1–16. https://doi.org/10.3390/sym11010018

Abdeljawad T., Mlaiki N., Aydi H., Souayah N. Double controlled metric type spaces and some fixed point results. Mathematics, 2018, vol. 6, no. 320, pp. 1–10. https://doi.org/10.3390/math6120320

Mlaiki N. Double controlled metric-like spaces. Journal of Inequalities and Applications, 2020, vol. 189, pp. 1–12. https://doi.org/10.1186/s13660-020-02456-z

Samet B., Vetro C., Vetro P. Fixed point theorems for αψ-contractive-type mappings. Nonlinear Analysis, Theory Methods and Applications, 2012, vol. 75, pp. 2154–2165.

Jachymski J. The contraction principle for mappings on a metric space with a graph. Proceedings of the American Mathematical Society, 2008, vol. 136, pp. 1359–1373.

Jleli M., Samet B. A new generalization of the Banach contraction principle. Journal of Inequalities and Applications, 2014, no. 38, pp. 1–8. https://doi.org/10.1186/1029-242X-2014-38

Salimi P., Latif A., Hussain N. Modified αψ-contractive mappings with applications. Fixed Point Theory and Applications, 2013, no. 151, pp. 1–19. http://www.fixedpointtheoryandapplications.com/content/2013/1/151 (accessed: April 15, 2024).

Farajzadeh A. P., Kaewcharoen A., Plubtieng S. An application of fixed point theory to a nonlinear differential equation. Abstract and Applied Analysis, 2014, vol. 2014, art. ID 605405.

Souayah N., Mrad M., Mlaiki N. The GM-contraction principle for mappings on an M-metric spaces endowed with a graph and fixed point theorems. IEEE Access, 2018, vol. 6, pp. 25178–25184. https://doi.org/10.1109/ACCESS.2018.2833147

Karapi nar E., Khojasteh F., Mitrović Z. D. A proposal for revisiting Banach and Caristi type theorems in b-metric spaces. Mathematics, 2019, vol. 7, no. 308, pp. 1–4. https://doi.org/10.3390/math7040308

Загрузки

Опубликован

29.05.2025

Как цитировать

Суая, Н., & Митрович, З. Д. (2025). The methods to solve some classes boundary value problems via the results in double controlled metric-like spaces: Решение некоторых классов граничных задач с помощью результатов, полученных в частично метрических пространствах с двойным контролем. Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления, 21(1), 58–74. https://doi.org/10.21638/spbu10.2025.105

Выпуск

Раздел

Прикладная математика