An epidemic model of malaria without and with vaccination. Pt 1. A model of malaria without vaccination

Authors

  • Serine Modou Ndiaye St. Petersburg State University, 199034, St. Petersburg, Russian Federation
  • Elena M. Parilina St. Petersburg State University, 199034, St. Petersburg, Russian Federation

DOI:

https://doi.org/10.21638/11701/spbu10.2022.207

Abstract

We propose a mathematical model of the malaria epidemic in the human population (host), where the transmission of the disease is produced by a vector population (mosquito) known as the malaria mosquito. The malaria epidemic model is defined by a system of ordinary differential equations. The host population at any time is divided into four sub-populations: susceptible, exposed, infectious, recovered. Sufficient conditions for stability of equilibrium without disease and endemic equilibrium are obtained using the Lyapunov’s function theory. We define the reproductive number characterizing the level of disease spreading in the human population. Numerical modeling is made to study the influence of parameters on the spread of vector-borne disease and to illustrate theoretical results, as well as to analyze possible behavioral scenarios.

Keywords:

epidemic model, human population, malaria, sub-populations, modification epidemic SEIR model, reproductive number, endemic equilibrium

Downloads

Download data is not yet available.
 

References

Литература

Chang S. L., Piraveenan M., Pattison P., Prokopenko M. Game theoretic modelling of infectious disease dynamics and intervention methods // Journal of Biological Dynamic. 2020. P. 57–89. https://doi.org/10.1080/17513758.2020.1720322

Sokolov S. V., Sokolova A. L. HIV incidence in Russia: SIR epidemic model-based analysis // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2019. Т. 15. Вып. 4. С. 616–623.

Захаров В. В., Балыкина Ю. Е. Прогнозирование динамики эпидемии коронавируса (COVID-19) на основе метода прецедентов // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2020. Т. 16. Вып. 3. С. 249–259. https://doi.org/10.21638/11701/spbu10.2020.303

Smith D. L., Battle K. E., Hay S. I., Barker C. M., Scott T. W., McKenzie F. E. Ross, McDonald, and a theory for the dynamics and control of mosquito-transmitted pathogens // PLoS Pathog. 2012. Vol. 8. N 4. Art. no. e1002588.

McDonald G. Epidemiological basis of malaria control // Bull. World Health Organ. 1956. Vol. 15. N 3–5. P. 613–626.

Feng Z., Hernandez V. Competitive exclusion in a vector-host model for the dengue fever // Math. Biol. 1997. P. 523–544.

Qiu Z. Dynamical behavior of a vector-host epidemic model with demographic structure // Computers & Mathematics with Applications. 2008. Vol. 56. N 12. P. 3118–3129.

Sirbu A., Lorento V., Servedio V., Tria F. Opinion dynamics: models, extensions and external effects // Physics and Society. 2016. Vol. 5. P. 363–401.

Bushman M., Antia R., Udhayakumar V., de Roode J. C. Within-host competition can delay evolution of drug resistance in malaria // PLoS Biol. 2018. Vol. 16. N 8. Art. no. e2005712. urlhttps://doi.org/10.1371/journal.pbio.2005712

Turner A., Jung C., Tan P., Gotika S., Mago V. A comprehensive model of spread of malaria in humans and mosquitos // SoutheastCon. 2015. P. 1–6.

Hong H., Wang N., Yang J. Implications of stochastic transmission rates for managing pandemic risks // Rev. Financ. Stud. 2021. https://doi.org/10.1093/rfs/hhaa132

Gómez-Hernández E. A., Ibargüen-Mondragón E. A two patch model for the population dynamics of mosquito-borne diseases // J. Phys.: Conference Series. 2019. Vol. 1408. N 1. Art. no. 012002.

Kamgang J. C., Thron C. P. Analysis of malaria control measures’ effectiveness using multistage vector model // Bull. Math. Biol. 2019. Vol. 81. P. 4366–4411.

Александров А. Ю. Условия перманентности моделей динамики популяций с переключениями и запаздыванием // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2020. Т. 16. Вып. 2. С. 88–99. https://doi.org/10.21638/11701/spbu10.2020.201

Wiwanitkit V. Unusual mode of transmission of dengue // J. Infect. Dev. Ctries. 2009. Vol. 4. P. 051–054. https://doi.org/10.3855/jidc.145

Ndiaye S. M., Lam M., Mansal F. Modélisation d’un système de pêcherie avec maladie // Bachelor Thesis. 2017. P. 3–10.

Aldila D., Seno H. A. Population dynamics model of mosquito-borne disease transmission,

focusing on mosquitoes’ biased distribution and mosquito repellent use // Bull. Math. Biol. 2019. Vol. 81. P. 4977–5008.

Lipsitch M., Cohen T., Cooper B., Robins J. M., Ma S., James L., Gopalakrishna G., Chew S. K., Tan C. C., Samore M. H., Fisman D., Murray M. Transmission dynamics and control of severe acute respiratory syndrome // Science. 2003. Vol. 300. P. 1966–1970.

Britton T. Stochastic epidemic models: A survey // Mathematical Biosciences. 2010. Vol. 225. Iss. 1. P. 24–35.

Lashari A. A., Zaman G. Global dynamics of vector-borne diseases with horizontal transmission in host population // Computers & Mathematics with Applications. 2011. Vol. 61. Iss. 4. P. 745–754.

Arquam M., Anurag S., Cherifi H. Impact of seasonal conditions on vector-borne epidemiological dynamics // IEEE Access. 2020. Vol. 8. P. 94510–94525.

Kim M., Paini D., Jurdak R. Modeling stochastic processes in disease spread across a heterogeneous social system // Proceedings of the National Academy of Sciences. 2019. Vol. 116. N 2. P. 401–406.

Derdei B. Étude de modèles épidémiologiques: Stabilité, observation et estimation de paramètres // HAL theses. 2013. P. 7–11. URL: https://tel.archives-ouvertes.fr/tel-00841444/file/BicharaPhDThesis.pdf (дата обращения: 15.04.2022).

Hyman J. M., Li J. An intuitive formulation for the reproductive number for the spread of diseases in heterogeneous populations // Mathematical Biosciences. 2000. Vol. 167. N 1. P. 65–86.


References

A model of malaria without vaccination

A model of malaria without vaccination. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes,

Chang S. L., Piraveenan M., Pattison P., Prokopenko M. Game theoretic modelling of infectious disease dynamics and intervention methods. Journal of Biological Dynamic, 2020, pp. 57–89. https://doi.org/10.1080/17513758.2020.1720322

Sokolov S. V., Sokolova A. L. HIV incidence in Russia: SIR epidemic model-based analysis. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2019, vol. 15, iss. 4, pp. 616–623.

Zakharov V. V., Balykina Yu. E. Prognozirovanie dinamiki epidemii koronavirusa (COVID-19) na osnove metoda precedentov [Predicting the dynamics of the coronavirus (COVID-19) epidemic based on the case-based reasoning approach]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2020, vol. 16, iss. 3, pp. 249–259. https://doi.org/10.21638/11701/spbu10.2020.303 (In Russian)

Smith D. L, Battle K. E., Hay S. I., Barker C. M., Scott T. W., McKenzie F. E. Ross, McDonald, and a theory for the dynamics and control of mosquito-transmitted pathogens. PLoS Pathog., 2012, vol. 8, no. 4, art. no. e1002588.

McDonald G. Epidemiological basis of malaria control. Bull. World Health Organ., 1956, vol. 15, no. 3–5, pp. 613–626.

Feng Z., Hernandez V. Competitive exclusion in a vector-host model for the dengue fever. Math. Biol., 1997, pp. 523–544.

Qiu Z. Dynamical behavior of a vector-host epidemic model with demographic structure. Computers & Mathematics with Applications, 2008, vol. 56, no. 12, pp. 3118–3129.

Sirbu A., Lorento V., Servedio V., Tria F. Opinion dynamics: models, extensions and external effects. Physics and Society, 2016, vol. 5, pp. 363–401.

Bushman M., Antia R., Udhayakumar V., de Roode J. C. Within-host competition can delay evolution of drug resistance in malaria. PLoS Biol., 2018, vol. 16, no. 8, art. no. e2005712. https://doi.org/10.1371/journal.pbio.2005712

Turner A., Jung C., Tan P., Gotika S., Mago V. A comprehensive model of spread of malaria in humans and mosquitos. SoutheastCon, 2015, pp. 1–6.

Hong H., Wang N., Yang J. Implications of stochastic transmission rates for managing pandemic risks. Rev. Financ. Stud., 2021.

Gómez-Hernández E. A., Ibargüen-Mondragón E. A two patch model for the population dynamics of mosquito-borne diseases. J. Phys.: Conference Series, 2019, vol. 1408, no. 1, art. no. 012002.

Kamgang J. C., Thron C. P. Analysis of malaria control measures’ effectiveness using multistage vector model. Bull. Math. Biol., 2019, vol. 81, pp. 4366–4411.

Aleksandrov A. Yu. Usloviia permanentnosti modelei dinamiki populiatsii s perekliucheniiami i zapazdyvaniem [Permanence conditions for models of population dynamics with switches and delay]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2020, vol. 16, iss. 2, pp. 88–99.

Wiwanitkit V. Unusual mode of transmission of dengue. J. Infect. Dev. Ctries, 2009, vol. 4, pp. 051–054.

Ndiaye S. M., Lam M., Mansal F. Modélisation d’un système de pêcherie avec maladie. Bachelor Thesis, 2017, pp. 3–10.

Aldila D., Seno H. A. Population dynamics model of mosquito-borne disease transmission, focusing on mosquitoes’ biased distribution and mosquito repellent use. Bull. Math. Biol., 2019, vol. 81, pp. 4977–5008.

Lipsitch M., Cohen T., Cooper B., Robins J. M., Ma S., James L., Gopalakrishna G., Chew S. K., Tan C. C., Samore M. H., Fisman D., Murray M. Transmission dynamics and control of severe acute respiratory syndrome. Science, 2003, vol. 300, pp. 1966–1970.

Britton T. Stochastic epidemic models: A survey. Mathematical Biosciences, 2010, vol. 225, iss. 1, pp. 24–35.

Lashari A. A., Zaman G. Global dynamics of vector-borne diseases with horizontal transmission in host population. Computers & Mathematics with Applications, 2011, vol. 61, iss. 4, pp. 745–754.

Arquam M., Anurag S., Cherifi H. Impact of seasonal conditions on vector-borne epidemiological dynamics. IEEE Access, 2020, vol. 8, pp. 94510–94525.

Kim M., Paini D., Jurdak R. Modeling stochastic processes in disease spread across a heterogeneous social system. Proceedings of the National Academy of Sciences, 2019, vol. 116, no. 2, pp. 401–406.

Derdei B. Étude de modèles épidémiologiques: Stabilité, observation et estimation de paramètres. HAL theses, 2013, pp. 7–11. Available at: https://tel.archives-ouvertes.fr/tel-00841444/file/BicharaPhDThesis.pdf (accessed: April 15, 2022).

Hyman J. M., Li J. An intuitive formulation for the reproductive number for the spread of diseases in heterogeneous populations. Mathematical Biosciences, 2000, vol. 167, no. 1, pp. 65–86.

Published

2022-07-28

How to Cite

Ndiaye, S. M., & Parilina, E. M. (2022). An epidemic model of malaria without and with vaccination. Pt 1. A model of malaria without vaccination. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 18(2), 263–277. https://doi.org/10.21638/11701/spbu10.2022.207

Issue

Section

Computer Science