Generating functions of the Cauchy operator of a hamiltonian system
DOI:
https://doi.org/10.21638/11701/spbu10.2023.408Abstract
The article is related to the mathematical apparatus for describing the phase trajectories of a hamiltonian system. An approach related to the construction of generating functions for the Cauchy operator is proposed. It is shown that one-parameter families of generating functions satisfy the Hamilton — Jacobi equation or its modifications. Using the example of small oscillations of a mathematical pendulum, it is shown that the description of the Cauchy operator for sufficiently long periods of time requires the use of generating functions of various types. With the help of generating functions, a variational principle similar to the principle of least action is formulated. The efficiency of using generating functions in the development of conservative methods of numerical integration is also noted.
Keywords:
Hamilton equations, generating function, Cauchy operator, variational principle
Downloads
References
Арнольд В. И. Математические методы классической механики. М.: Наука, 1989. 472 с.
Шмыров А. С. Устойчивость в гамильтоновых системах. СПб.: Изд-во Санкт-Петербургского университета, 1995. 127 с.
Маркеев А. П. Теоретическая механика: учеб. пособие для университетов. М.: Наука, 1990. 416 с.
Yoshida H. Construction of higher order symplectic integrators // Physics Letters A. 1990. Vol. 150. Iss. 5–7. P. 262–268. htpps://doi.org/10.1016/0375-9601(90)90092-3
Shmyrov A., Shmyrov V., Shymanchuk D. The research of motion in a neighborhood of collinear libration point by conservative methods // AIP Conference Proceedings. 9th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences. AMiTaNS 2017. 2017. Vol. 1895. Art. N 060003. htpps://doi.org/10.1063/1.5007388
Малявкин Г. П., Шмыров А. С., Шмыров В. А. Об одном численном методе для управляемых гамильтоновых систем // Вестник Санкт-Петербургского государственного университета технологии и дизайна. Естественные и технические науки. 2016. № 2. С. 34–37.
References
Arnold V. I. Matematicheskie metody klassicheskoi mekhaniki [Mathematical methods of classical mechanics]. Moscow, Nauka Publ., 1989, 472 p. (In Russian)
Shmyrov A. S. Ustojchivost' v gamil'tonovyh sistemah [Stability in hamiltonian systems]. St. Petersburg, St. Petersburg State University Press, 1995, 127 p. (In Russian)
Markeev A. P. Teoreticheskaya mekhanika [Theoretical mechanics]. Moscow, Nauka Publ., 1990, 416 p. (In Russian)
Yoshida H. Construction of higher order symplectic integrators. Physics Letters A, 1990, vol. 150, iss. 5–7, pp. 262–268. https://doi.org/10.1016/0375-9601(90)90092-3
Shmyrov A., Shmyrov V., Shymanchuk D. The research of motion in a neighborhood of collinear libration point by conservative methods. AIP Conference Proceedings. 9th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences, AMiTaNS 2017, 2017, vol. 1895, art. no. 060003. https://doi.org/10.1063/1.5007388
Malyavkin G. P., Shmyrov A. S., Shmyrov V. A. Ob odnom chislennom metode dlya upravlyayemykh gamil'tonovykh sistem [On the numerical method for a controlled hamiltonian system]. Vestnik of Saint Petersburg State University of Technology and Design. Natural and Technical Science, 2016, no. 2, pp. 34–37. (In Russian)
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.