Deformation of a plane modelled by John's material with a rigid elliptical inclusion loaded by force and moment

Authors

  • Yulia V. Malkova St. Petersburg State University, 199034, St. Petersburg, Russian Federation

DOI:

https://doi.org/10.21638/11701/spbu10.2023.303

Abstract

An exact analytical solution is obtained for a non-linear problem of elasticity theory for a plane with a rigid elliptical inclusion. A concentrated force and a moment are applied at the center of inclusion. The elastic properties of the plane are modeled by John’s harmonic material. For this material methods of the theory of functions of a complex variable are using for solving nonlinear plane problems. Nominal stresses and displacements are expressed in terms of two analytical functions of a complex variable, which are determined from the boundary conditions on the contour of inclusion. The problems of the action of a concentrated force and moment on an elliptical core in a plane are considered separately. A comparison with a similar linear problem is made. The influence of the applied force and moment on the magnitude of stresses is studied depending on various parameters of the problem. Calculations of nominal stresses on the contour joining the plane with inclusion are performed.

Keywords:

non-linear plane problem, rigid elliptical inclusion, John's harmonic material, concentrated force and moment

Downloads

Download data is not yet available.
 

References

Литература

John F. Plane strain problems for a perfectly elastic material of harmonic type // Commun. Pure and Applied Mathematics. 1960. Vol. 13. Iss. 2. P. 239–296.

Мальков В. М. Введение в нелинейную упругость. СПб.: Изд-во С.-Петерб. ун-та, 2010. 276 с.

Mal’kov V. M., Mal’kova Y. V. Modeling nonlinear deformation of a plate with an elliptic inclusion by John's harmonic material // Vestnik of Saint Petersburg University. Mathematics. 2017. Vol. 50. Iss. 1. P. 74–81. https://doi.org/10.3103/S1063454117010095

Varley E., Cumberbatch E. Finite deformation of elastic materials surrounding cylindrical holes // Journal of Elasticity. 1980. Vol. 10. Iss. 4. P. 341–405.

Ru C. Q. On complex-variable formulation for finite plane elastostatics of harmonic materials // Acta Mechanica. 2002. Vol. 156. Iss. 3–4. P. 219–234.

Ru C. Q., Schiavone P., Sudak L. J., Mioduchowski A. Uniformity of stresses inside an elliptic inclusion in finite plane elastostatics // International Journal of Non-linear Mechanics. 2005. Vol. 38. Iss. 2–3. P. 281–287.

Мальков В. М., Малькова Ю. В. Плоская задача нелинейной упругости для гармонического материала // Вестник Санкт-Петербургского университета. Сер. 1. Математика, механика, астрономия. 2008. Вып. 3. С. 114–126.

Мальков В. М., Малькова Ю. В., Степанова В. А. Двухкомпонентная плоскость из материала Джона с межфазной трещиной, нагруженной давлением // Вестник Санкт-Петербургского университета. Сер. 1. Математика, механика, астрономия. 2013. Вып. 3. С. 113–125.

Мальков В. М., Малькова Ю. В. Деформация пластины с упругим эллиптическим включением // Вестник Санкт-Петербургского университета. Математика. Механика. Астрономия. 2015. Т. 2 (60). Вып. 4. С. 617–632.

Мусхелишвили Н. И. Некоторые основные задачи математической теории упругости. М.: Наука, 1966. 708 с.


References

John F. Plane strain problems for a perfectly elastic material of harmonic type. Commun. Pure and Applied Mathematics, 1960, vol. 13, no. 2, pp. 239–296.

Malkov V. M. Vvedenie v nelineinuiu uprugost' [Introduction to non-linear elasticity]. St. Petersburg, Saint Petersburg State University Press, 2010, 276 p. (In Russian)

Mal'kov V. M., Mal'kova Yu. V. Modeling non-linear deformation of a plate with an elliptic inclusion by John's harmonic material. Vestnik of Saint Petersburg University. Mathematics, 2017, vol. 50, iss. 1, pp. 74–81. https://doi.org/10.3103/S1063454117010095

Varley E., Cumberbatch E. Finite deformation of elastic materials surrounding cylindrical holes. Journal of Elasticity, 1980, vol. 10, no. 4, pp. 341–405.

Ru C.,Q. On complex-variable formulation for finite plane elastostatics of harmonic materials. Acta Mechanica, 2002, vol. 156, no. 3–4, pp. 219–234.

Ru C.,Q., Schiavone P., Sudak L.,J., Mioduchowski A. Uniformity of stresses inside an elliptic inclusion in finite plane elastostatics. International Journal of Non-linear Mechanics, 2005, vol. 38, iss. 2–3, pp. 281–287.

Malkov V. M., Malkova Yu. V. Ploskaia zadacha nelineinoi uprugosti dlia garmonicheskogo materiala [Plane problem of non-linear elasticity for harmonic material]. Vestnik of Saint Petersburg University. Series 1. Mathematics. Mechanics. Astronomy, 2008, iss. 3, pp. 114–126. (In Russian)

Malkov V. M., Malkova Yu. V., Stepanova V. A. Dvukhkomponentnaia ploskost' iz materiala Dzhona s mezhfaznoi treshchinoi, nagruzhennoi davleniem [Bi-material plane modelled by John's material with pressure-loaded interfacial crack]. Vestnik of Saint Petersburg University. Series 1. Mathematics. Mechanics. Astronomy, 2013, iss. 3, pp. 113–125. (In Russian)

Mal'kov V. M., Mal'kova Yu. V. Deformatsiia plastiny s uprugim ellipticheskim vkliucheniem [Deformation of a plate with elliptic elastic inclusion]. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 2015, vol. 2 (60), iss. 4, pp. 617–632. (In Russian)

Muskhelishvili N.,I. Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti [Some basic problems of mathematical theory of elasticity]. Moscow, Nauka Publ., 1966, 708 p. (In Russian)

Published

2023-10-22

How to Cite

Malkova, Y. V. (2023). Deformation of a plane modelled by John’s material with a rigid elliptical inclusion loaded by force and moment. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 19(3), 337–347. https://doi.org/10.21638/11701/spbu10.2023.303

Issue

Section

Applied Mathematics