Optimization approach to the design of nonlinear control system controllers

Authors

  • Sergey V. Zavadskiy St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation
  • Dmitrii A. Ovsyannikov St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation https://orcid.org/0000-0002-0829-2023
  • Dmitrii D. Melnikov St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/11701/spbu10.2023.109

Abstract

The optimization approach is applied to the synthesis and optimization of nonlinear real-time feedback optimal control system of a certain Maglev platform. To optimize the nonlinear control law, the integral functional criteria is minimized, which evaluates the quality of the dynamics of not one trajectory, but an ensemble of nonlinear trajectories of the system. The considered ensemble of trajectories covers the entire area of the engineering gap between the platform and the guide rails. In this area the magnetic forces provide highly nonlinear effects due to the considered design features of the object. At the same time, it is required to provide the stabilization within the entire engineering gap. It makes this statement to be a multi-input nonlinear control problem. The components of the feedback control law vector have a polynomial form of the state-space variables. As a result of computational optimization of trajectories ensemble, a class of Pareto-optimal polynomial regulators is constructed for considered control object. In the presented set, each Pareto-optimal point corresponds to a specific designed controller and investigated functional criteria which evaluates the entire ensemble of perturbed nonlinear trajectories. This allows a research engineer to choose various nonlinear regulators and achieve a compromise between stabilization accuracy and energy costs.

Keywords:

nonlinear system, stabilization, nonlinear regulators, Maglev, real-time feedback, ensemble of trajectories, optimization

Downloads

Download data is not yet available.
 

References

References

Ovsyannikov D. A., Zavadskiy S. V. Optimization approach to the synthesis of plasma stabilization system in tokamak iter. Problems of Atomic Science and Technology, 2018, vol. 116, no. 4, pp. 102-105.

Ovsyannikov D. A., Zavadskiy S. V. Pareto-optimal choice of controller dimension for plasma stabilization system. IFAC-PapersOnLine, 2018, vol. 51, no. 32, pp. 175-178.

Zavadskiy S. V., Sharovatova D. Improvement of quadrocopter command performance system. International Conference on "Stability and Control Processes" in memory of V. I. Zubov. SCP - Proceedings. St. Petersburg, 2015, pp. 609-610.

Zavadskiy S. V., Lepikhin T. Dynamics characteristics optimization for the UAV ensemble of motions. Communications in Computer and Information Science, 2020, 1140 CCIS, pp. 175-186.

Ovsyannikov A. D. Upravlenie programmnim i vozmuchennimi dvigeniyami [Control of program and disturbed motions]. Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2006, iss. 4, pp. 111-125. (In Russian)

Ovsyannikov D. A. Modelirovanie i optimizatciya dinamiki puchkov zaryagenniph chastic [ Modeling and optimization of charged particle beam dynamics ]. Leningrad, Leningrad University Publ., 1990, 312 p. (In Russian)

Ovsyannikov D. A. Matematicheskie methodi upravleniya puchkami [ Mathematical methods of beam control ]. Leningrad, Leningrad University Publ., 1980, 228 p. (In Russian)

Ovsyannikov D. A., Vladimirova L. V., Rubtsova I. D., Rubanik A. V., Ponomarev V. A. Modificirovannii geneticheskii algoritm poiska globalnogo ekstremuma v sochetanii с napravlennimi methodami [Modified genetic algorithm of global extremum search in combination with directional methods]. The Bulletin of Irkutsk State University. Series Mathematics, 2022, vol. 39, pp. 17-33. https://doi.org/10.26516/1997-7670.2022.39.17 (In Russian)

Kotina E. D., Ovsyannikov D. A., Elizarova M. Optimization approach to the velocity field determining problem. Cybernetics and Physics, 2022, vol. 11, no. 3, pp. 131-135.

Kotina E. D., Ovsyannikov D. A. Optimization method of the velocity field determination for tomographic images. Stability and Control Processes. Springer Nature (Lecture Notes in Control and Information Sciences - Proceedings), 2022, pp. 723-729.

Post R. F., Ryutov D. D. The Inductrack: a simpler approach to magnetic levitation. IEEE Trans. Applied Superconductivity, 2000, vol. 10, no. 1, pp. 901-904.

Narayan D., Manikant K., Pratibha T. Analysis of magnetic levitation and maglev trains. International Journal of Innovative Science, Engineering and Technology, 2016, vol. 3, no. 12, pp. 108-112.

El Hajjaji A., Ouladsine M. Modeling and nonlinear control of magnetic levitation systems. IEEE Trans. Industrial Electronics, 2001, vol. 48, no. 4, pp. 831-838.

Bachle T., Hentzelt S., Graichen K. Nonlinear model predictive control of a magnetic levitation system. Control Engineering Practice, 2013, vol. 21, no. 9, pp. 1250-1258.

Schmid P., Eberhard P. Offset-free nonlinear model predictive control by the example of Maglev vehicles. IFAC-PapersOnLine, 2021, vol. 54, no. 6, pp. 83-90.

Zi-Jiang Y., Michitaka T. Adaptive robust nonlinear control of a magnetic levitation system. Automatica, 2001, vol. 37, no. 7, pp. 1125-1131.

Rosinov'a D., Hypiusov'a M. Comparison of nonlinear and linear controllers for magnetic levitation system. Applied Sciences, 2021, vol. 11, no. 17, p. 7795.

Vernekar P., Banda V. Robust sliding mode control of a magnetic levitation system: continuous-time and discrete-time approaches. Applied Sciences, 2021, vol. 11, no. 17, p. 7795.

Wang J., Zhao L., Yu L. Adaptive terminal sliding mode control for magnetic levitation systems with enhanced disturbance compensation. IEEE Trans. Industrial Electronics, 2021, vol. 68, no. 1, pp. 756-766.

Melnikov D. D., Sakamoto N., Zavadskiy S. V., Golovkina A. G. Nonlinear optimal control for Maglev platform roll motion. IFAC-PapersOnLine, 2022, vol. 55, no. 16, pp. 418-423. https://doi.org/10.1016/j.ifacol.2022.09.060

Amoskov V. M., Belov A. V., Belyakov V. A., Gapionok E. I., Gribov Y. V., Kukhtin V. P., Lamzin E. A., Mita Y., Ovsyannikov A. D., Ovsyannikov D. A., Patisson L., Sytchevsky S. E., Zavadskiy S. V. Magnetic model MMTC-2.2 of ITER tokamak complex. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2019, vol. 15, iss. 1, pp. 5-21. https://doi.org/10.21638/11702/spbu10.2019.101

Amoskov V. M., Arslanova D. N., Bazarov A. M., Belov A. V., Belyakov V. A., Belyakova T. F., Vasiliev V. N., Gapionok E. I., Zaitzev A. A., Zenkevich M. Yu., Kaparkova M. V., Kukhtin V. P., Lamzin E. A., Larionov M. S., Maximenkova N. A., Mikhailov V. M., Nezhentzev A. N., Ovsyannikov D. A., Ovsyannikov A. D., Rodin I. Yu., Sychevsky S. E., Firsov A. A., Shatil N. A. Simulation of electrodynamic suspension systems for levitating vehicles. IV. Discrete track systems. Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2016, iss. 3, pp. 4-17.

Amoskov V. M., Arslanova D. N., Bazarov A. M., Belov A. V., Belyakov V. A., Firsov A. A., Gapionok E. I., Kaparkova M. V., Kukhtin V. P., Lamzin E. A., Larionov M. S., Mizintzev A. V., Mikhailov V. M., Nezhentzev A. N., Ovsyannikov D. A., Ovsyannikov A. D., Rodin I. Yu., Shatil N. A., Sytchevsky S. E., Vasiliev V. N., Zenkevich M. Yu. Simulation of maglev EDS performance with detailed numerical models. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2018, vol. 14, iss. 4, pp. 286-301. https://doi.org/10.21638/11702/spbu10.2018.402

Andreev E. N., Arslanova D. N., Akhmetzyanova E. V., Bazarov A. M., Vasil’ev V. N., Vasil’eva O. S., Verkhoturov M. S., Gapionok E. I., Demina A. A., Zavadskii S. V., Zenkevich M. Yu., Kaparkova M. V., Kuz’menkov V. D., Labusov A. N., Larionov M. S., Manzuk M. V., Mizintsev A. V., Nezhentsev A. N., Ovsyannikov D. A., Ovsyannikov A. D., Khokhlov M. V. Combined electromagnetic suspensions with reduced energy consumption for levitation vehicles. Technical Physics, 2019, vol. 64, no. 7, pp. 1060-1065.

Amoskov V., Arslanova D., Baranov G., Bazarov A., Belyakov V., Firsov A., Kaparkova M., Kavin A., Khokhlov M., Kukhtin V., Kuzmenkov V., Labusov A., Lamzin E., Lantzetov A., Larionov M., Nezhentzev A., Ovsyannikov D., Ovsyannikov A., Rodin I., Shatil N., Sytchevsky S., Vasiliev V., Zapretilina E., Zenkevich M. Modeling EMS Maglev systems to develop control algorithms. Cybernetics and Physics, 2018, vol. 7, no. 1, pp. 11-17.

Zavadskiy S. V., Verkhoturov M. S., Golovkina A. G., Ovsyannikov D. A., Kukhtin V., Shatil N., Belov A. Optimization of a real-time stabilization system for the MIMO nonlinear MagLev platform. Stability and Control Processes. SCP 2020. Lecture Notes in Control and Information Sciences - Proceedings. Cham, Springer Publ., 2022, pp. 281-290. https://doi.org/10.1007/978-3-030-87966-2_31

Pontryagin N. S., Boltyansky V. G., Gamkrelidze M. V., Mishchenko E. V. Matematicheskaya teoriya optimalnikh processov [ Mathematical theory of optimal processes ]. Moscow, Nauka Publ., 1983, 392 p. (In Russian)

Sakamoto N. Case studies on the application of the stable manifold approach for nonlinear optimal control design. Automatica, 2013, vol. 49, no. 2, pp. 568-576.

Downloads

Published

2023-04-27

How to Cite

Zavadskiy, S. V., Ovsyannikov, D. A., & Melnikov, D. D. (2023). Optimization approach to the design of nonlinear control system controllers. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 19(1), 109–119. https://doi.org/10.21638/11701/spbu10.2023.109

Issue

Section

Control Processes

Most read articles by the same author(s)