О влиянии центральной тенденции на характер плотности распределения максимальной энтропии в машинном обучении
DOI:
https://doi.org/10.21638/11701/spbu10.2023.204Аннотация
Принцип максимальной энтропии (МЭ) обладает рядом преимуществ, позволяющих применять его в машинном обучении. Плотность распределения максимальной энтропии (ПРМЭ) требует решения задачи вариационного исчисления на априорном распределении, где в качестве параметра может быть использована центральная тенденция, которая в пространстве Лебега описывается обобщенным средним по Гельдеру. В работе показана эволюция плотности распределения МЭ в зависимости от заданной нормы среднего. Минимум расхождения Кульбака — Лейблера между ПРМЭ и априорной плотностью достигается на гармоническом среднем, что эффективно для сокращения размерности обучающей выборки. В то же время это приводит к ухудшению функции потерь в условиях машинного обучения по прецедентам.
Ключевые слова:
принцип максимальной энтропии, распределение максимальной энтропии, центральная тенденция, обобщенное среднее, машинное обучение
Скачивания
Библиографические ссылки
Загрузки
Опубликован
Как цитировать
Выпуск
Раздел
Лицензия
Статьи журнала «Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления» находятся в открытом доступе и распространяются в соответствии с условиями Лицензионного Договора с Санкт-Петербургским государственным университетом, который бесплатно предоставляет авторам неограниченное распространение и самостоятельное архивирование.