Оптимальное граничное управление колебаниями струны смещением на двух концах с заданными значениями функции прогиба в промежуточные моменты времени

Авторы

  • Ваня Рафаелович Барсегян Институт механики НАН Республики Армения, Армения, 0019, Ереван, пр. Маршала Баграмяна, 24Б; Ереванский государственный университет, Армения, 0025, Ереван, ул. Алека Манукяна, 1 https://orcid.org/0000-0001-6518-3694

DOI:

https://doi.org/10.21638/11701/spbu10.2022.310

Аннотация

Рассматривается задача оптимального граничного управления для уравнения колебаниями струны с заданными начальным, конечным условиями и заданными значениями функции прогиба струны в промежуточные моменты времени и с критерием качества, заданным на всем промежутке времени. Для произвольных чисел первых гармоник с использованием метода разделения переменных и методов теории оптимального управления с многоточечными промежуточными условиями построены оптимальные граничные управления. В качестве приложения предложенного подхода построено граничное оптимальное управление с заданным прогибом в промежуточном моменте времени.

Ключевые слова:

колебания струны, оптимальное граничное управление, оптимальное управление колебаниями, промежуточные условия, разделение переменных

Скачивания

Данные скачивания пока недоступны.
 

Библиографические ссылки

Литература

Бутковский А. Г. Теория оптимального управления системами с распределенными параметрами. М.: Наука, 1965. 476 с.

Знаменская Л. Н. Управление упругими колебаниями. М.: Физматлит, 2004. 176 с.

Zuazua Е. Controllability of partial differential equations. Madrid: Universidad Autonoma, 2002. 311 p.

Абдукаримов M. Ф. Об оптимальном граничном управлении смещениями процесса вынужденных колебаний на двух концах струны // Докл. АН Республики Таджикистан. 2013. Т. 56. № 8. С. 612-618.

Андреев А. А., Лексина С. В. Задача граничного управления для системы волновых уравнений // Вестник Самарск. гос. технич. ун-та. Сер. Физ.-мат. науки. 2008. № 1(16). С. 5-10.

Гибкина Н. В., Сидоров М. В., Стадникова А. В. Оптимальное граничное управление колебаниями однородной струны // Радиоэлектроника и информатика. 2016. № 2. С. 3-11.

Il’in V. A., Moiseev Е. I. Optimization of boundary controls of string vibrations // Russian Mathematical Surveys. 2005. Vol. 60. Iss. 6. P. 1093-1119. https://doi.org/10.1070/RM2005v060n06ABEH004283

Moiseev E. I., Kholomeeva A. A. On an optimal boundary control problem with a dynamic boundary condition // Differential Equations. 2013. Vol. 49. P. 640-644. https://doi.org/10.1134/S0012266113050133

Моисеев E. И., Холомеева А. А., Фролов А. А. Граничное управление смещением процесса колебаний при граничном условии типа торможения за время, меньшее критического // Материалы Междунар, конференции «Mathematical Modelling in Applied Sciences, ICMMAS-17». С.-Петерб. политехнич. ун-т, 24-28 июля 2017 г. Итоги науки и техники. Сер. Соврем, математика и ее приложения. Темат. обзор. № 160. М.: ВИНИТИ РАН, 2019. С. 74-84.

Копец М. М. Задача оптимального управления процессом колебания струны // Теория оптимальных решений. Киев: Ин-т кибернетики им. В. М. Глушкова НАН Украины, 2014. С. 32-38.

Barseghyan V. R. Optimal control of string vibrations with nonseparate state function conditions at given intermediate instants // Automation and Remote Control. 2020. Vol. 81. Iss. 2. P. 226-235. https://doi.org/10.1134/S0005117920020034

Barseghyan V. R. About one problem of optimal control of string oscillations with non-separated multipoint conditions at intermediate moments of time // Stability, Control and Differential Games / eds A. Tarasyev, V. Maksimov, T. Filippova. Lecture Notes in Control and Information Sciences. Proceedings. Cham: Springer, 2020. P. 13-25. https://doi.org/10.1007/978-3-030-42831-0_2

Барсегян В. Р., Саакян М. А. Оптимальное управление колебаниями струны с заданными состояниями в промежуточные моменты времени // Изв. НАН Республики Армения. Механика. 2008. Т. 61. № 2. С. 52-60.

Барсегян В. Р. Об одной задаче граничного оптимального управления колебаниями струны с ограничениями в промежуточные моменты времени // Аналитическая механика, устойчивость и управление: труды XI Междунар. Четаевск. конференции. Т. 3. Ч. I. Казань, 13-17 июня 2017 г. Казань: Казанск. науч.-исслед. технич. ун-т, 2017. С. 119-125.

Барсегян В. Р., Солодуша С. В. Задача граничного управления колебаниями струны смещением левого конца при закрепленном правом конце с заданными значениями функции прогиба в промежуточные моменты времени // Вестник российских университетов. Математика. 2020. Т. 25. № 130. С. 131-146.

Barseghyan V. R., Movsisyan L. A. Optimal control of the vibration of elastic systems described by the wave equation // Intern. Applied Mechanics. 2012. Vol. 48. Iss. 2. P. 234-239. http://dx.doi.org/10.1007/s10778-012-0519-9

Барсегян В. P. Управление составных динамических систем и систем с многоточечными промежуточными условиями. М.: Наука, 2016. 230 с.

Корзюк В. И., Козловская И. С. Двухточечная граничная задача для уравнения колебания струны с заданной скоростью в некоторый момент времени. II // Труды Ин-та математики НАН Беларуси. 2011. Т. 19. № 1. С. 62-70.

Тихонов А. Н., Самарский А. А. Уравнения математической физики. М.: Наука, 1977. 736 с.

Красовский Н. Н. Теория управления движением. М.: Наука, 1968. 476 с


References

Butkovskiy A. G. Teoriya optimal’nogo upravleniya sistemami s raspredelennymi parametrami [Theory of optimal control of systems with distributed parameters]. Moscow, Nauka Publ., 1965, 476 p. (In Russian)

Znamenskaya L. N. Upravlenie uprugimi kolebaniyami [Control of elastic vibrations]. Moscow, Fizmatlit Publ., 2004, 176 p. (In Russian)

Zuazua E. Controllability of partial differential equations. Madrid, Universidad Autonoma Press, 2002, 311 p.

Abdukarimov M. F. Ob optimal’nom granichnom upravlenii smeshcheniyami protsessa vvnuzhden-nykh kolebaniy na dvukh kontsakh struny [On optimal boundary control of displacements in the process of forced vibrationson both ends of a string]. Dokl. Akad. Nauk Republic of Tadzhikistan, 2013, vol. 56, no. 8, pp. 612-618. (In Russian)

Andreev A. A., Leksina S. V. Zadacha granichnogo upravleniya dlya sistemy volnovykh uravneniy [The boundary control problem for the system of wave equations]. Vestnik of Samara State Technical University. Series Physics and Mathematics Sciences, 2008, no. 1(16), pp. 5-10. (In Russian)

Gibkina N. V., Sidorov M. V., Stadnikova A. V. Optimal’noe granichnoe upravlenie kolebaniyami odnorodnoy struny [Optimal boundary control of vibrations of uniform string]. Radioelektronics and informatics, 2016, no. 2, pp. 3-11. (In Russian)

Il’in V. A., Moiseev E. I. Optimization of boundary controls of string vibrations. Russian Mathematical Surveys, 2005, vol. 60, iss. 6, pp. 1093-1119. https://doi.org/10.1070/RM2005v060n06ABEH004283

Moiseev E. I., Kholomeeva A. A. On an optimal boundary control problem with a dynamic boundary condition. Differential Equations, 2013, vol. 49, pp. 640-644. https://doi.org/10.1134/S0012266113050133

Moiseev E. I., Kholomeyeva A. A., Frolov A. A. Granichnoe upravlenie smeshcheniem protsessa kolebaniy pri granichnom uslovii tipa tormozheniya za vremya, men’shee kriticheskogo [Boundary displacement control for the oscillation process with boundary conditions of damping type for a time less than critical]. Proceedings of the Intern. Conference “Mathematical Modelling in Applied Sciences, ICMMAS-17”. St Petersburg Polytechnical University, July, 27t-28, 2017. Results of science and technology. Series Modern Mathematics and its Applications. Thematic overview, no. 160. Moscow, VINITI Publ., 2019, pp. 74-84. (In Russian)

Kopets M. M. Zadacha optimal’nogo upravleniya protsessom kolebaniya struny [The problem of optimal control of the string vibration process]. The theory of optimal solutions. Kiev, V. M. Glushkov Institute of Cybernetics NAS of Ukraine Publ., 2014, pp. 32-38. (In Russian)

Barseghyan V. R. Optimal control of string vibrations with nonseparate state function conditions at given intermediate instants. Automation and Remote Control, 2020, vol. 81, iss. 2, pp. 226-235. https://doi.org/10.1134/S0005117920020034

Barseghyan V. R. About one problem of optimal control of string oscillations with non-separated multipoint conditions at intermediate moments of time. Stability, Control and Differential Games. Eds A. Tarasyev, V. Maksimov, T. Filippova. Lecture Notes in Control and Information Sciences. Proceedings. Cham, Springer Publ., 2020, pp. 13-25. https://doi.org/10.1007/978-3-030-42831-0_2

Barseghyan V. R., Saakyan M. A. Optimal’noe upravlenie kolebaniyami struny s zadannymi sostoyaniyami v promezhutochnye momenty vremeni [The optimal control of wire vibration in the states of the given intermediate periods of time]. Proceedings of NAS of Republic Armenia. Mechanics, 2008, vol. 61, no. 2, pp. 52-60. (In Russian)

Barseghyan V. R. Ob odnoy zadache granichnogo optimal’nogo upravleniya kolebaniyami struny s ogranicheniyami v promezhutochnye momenty vremeni [About one problem of optimal boundaery control of string vibrations with restrictions in the intermediate moment of time]. Proceedings of the 11th Intern. Chetaev Conference “Analytical mechanics, stability and control”, June, 13-17, 2017, vol. 3, pt 1. Kazan, Kazan Scientific Research Tech. University Publ., 2017, pp. 119-125. (In Russian)

Barseghyan V. R., Solodusha S. V. Zadacha granichnogo upravleniya kolebaniyami struny smeshcheniem levogo kontsa pri zakreplennom pravom kontse s zadannymi znacheniyami funktsii progiba v promezhutochnye momenty vremeni [The problem of boundary control of string vibrations by displacement of the left end when the right end is fixed with the given values of the deflection function at intermediate times]. Russian Universities Reports. Mathematics, 2020, vol. 25, no. 130, pp. 131-146. (In Russian)

Barseghyan V. R., Movsisyan L. A. Optimal control of the vibration of elastic systems described by the wave equation. Intern. Applied Mechanics, 2012, vol. 48, iss. 2, pp. 234-239. http://dx.doi.org/10.1007/s10778-012-0519-9

Barseghyan V. R. Upravlenie sostavnykh dinamicheskikh sistem i sistem s mnogotochechnymi promezhutochnymi usloviyami [Control of compound dynamic systems and of systems with multipoint intermediate conditions]. Moscow, Nauka Publ., 2016, 230 p. (In Russian)

Korzyuk V. I., Kozlovskia I. S. Dvukhtochechnaya granichnaya zadacha dlya uravneniya kolebaniya struny s zadannoy skorost’yu v nekotoryy moment vremeni. II [Two-point boundary problem for the equation of string vibration with the given velocity at the certain moment of time. II]. Proceedings of the Institute of Mathematics NAS of Belarus, 2011, vol. 19, no. 1, pp. 62-70. (In Russian)

Tikhonov A. N., Samarskii A. A. Uravneniya matematicheskoy fiziki [Equations of mathematical physics]. Moscow, Nauka Publ., 1977, 736 p. (In Russian)

Krasovsky N. N. Teoriya upravleniya dvizheniem [The theory of motion control] . Moscow, Nauka Publ., 1968, 476 p. (In Russian)

Загрузки

Опубликован

29.09.2022

Как цитировать

Барсегян, В. Р. (2022). Оптимальное граничное управление колебаниями струны смещением на двух концах с заданными значениями функции прогиба в промежуточные моменты времени. Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления, 18(3), 410–424. https://doi.org/10.21638/11701/spbu10.2022.310

Выпуск

Раздел

Процессы управления