Mathematical modeling of bending of a thin orthotropic plate clamped along the contour

Authors

  • Oksana V. Germider Northern (Arctic) Federal University named after M. V. Lomonosov, 17, nab. Severnоi Dviny, Arkhangelsk, 163002, Russian Federation https://orcid.org/0000-0002-2112-805X
  • Vasilii N. Popov Northern (Arctic) Federal University named after M. V. Lomonosov, 17, nab. Severnоi Dviny, Arkhangelsk, 163002, Russian Federation https://orcid.org/0000-0003-0803-4419

DOI:

https://doi.org/10.21638/spbu10.2024.301

Abstract

Within the framework of Kirchhoff’s theory, a new approach to constructing a solution to the problem of modeling the bending of a thin rectangular orthotropic plate clamped along the contour, which is under the influence of a load normally distributed over its surface, is proposed. the solution to the inhomogeneous biharmonic equation for an orthotropic plate is obtained in the form of a partial sum of a double series in Chebyshev polynomials of the first kind. To find the coefficients in this expansion, the boundary value problem is reduced by the collocation method to a system of linear algebraic equations in matrix form using the properties of these polynomials. Based on matrix and differential transformations, expressions for bending moments and shearing forces are obtained. the results of calculations of the bending of the middle surface of the plate under different loads on the plate are presented, which demonstrate the effectiveness of the proposed approach.

Keywords:

collocation method, biharmonic equation, Chebyshev polynomials of the first kind, bending of a thin orthotropic plate

Downloads

Download data is not yet available.
 

References

Литература

Timoshenko S. P., Woinowsky-Krieger S. Theory of plates and shells. New York: McGraw-Hill Press, 1959. 580 p.

Голушко С. К., Идимешев С. В., Шапеев В. П. Метод коллокаций и наименьших невязок в приложении к задачам механики изотропных пластин // Вычислительные технологии. 2013. Т. 18. № 6. С. 31–43.

Шапеев В. П., Брындин Л. С., Беляев В. А. hp-Вариант метода коллокации и наименьших квадратов с интегральными коллокациями решения бигармонического уравнения // Вестник Самарского государственного технического университета. Сер. Физико-математические науки. 2022. Т. 26. № 3. С. 556–572. https://doi.org/10.14498/vsgtu1936

Голоскоков Д. П., Матросов А. В. Метод начальных функций в расчете изгиба защемленной по контуру тонкой ортотропной пластинки // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2021. Т. 17. Вып. 4. C. 330–344. https://doi.org/10.21638/11701/spbu10.2021.402

Lakshmi G. V. R., Gupta N. Bending of fully clamped orthotropic rectangular thin plates using finite continuous ridgelet transform // Materials Today: Proceedings. 2021. Vol. 47. P. 4199–4205. https://doi.org/10.1016/j.matpr.2021.04.458

Li R., Zhong Y., Tian B., Liu Y. On the finite integral transform method for exact bending solutions of fully clamped orthotropic rectangular thin plates // Applied Mathematics Letters. 2009. Vol. 22. P. 1821–1827. https://doi.org/10.1016/j.aml.2009.07.003

Xu Q., Yang Z., Ullah S., Jinghui Z., Gao Y. Analytical bending solutions of orthotropic rectangular thin plates with two adjacent edges free and the others clamped or simply supported using finite integral transform method // Advances in Civil Engineering. 2020. P. 1–11. https://doi.org/10.1155/2020/8848879

Голушко С. К., Идимешев С. В., Шапеев В. П. Разработка и применение метода коллокаций и наименьших невязок к решению задач механики анизотропных слоистых пластин // Вычислительные технологии. 2014. Т. 19. № 5. С. 24–36.

Хлуднев А. М. О равновесии пластины с тонким жестким включением и свободным краем // Математические заметки Северо-Восточного федерального университета им. М. К. Аммосова. 2021. Т. 28. Вып. 3. C. 105–120. https://doi.org/10.25587/SVFU.2021.64.10.007

Markous N. A. Boundary mesh free method with distributed sources for Kirchhoff plate bending problems // Applied Mathematical Modelling. 2021. Vol. 94. P. 139–151. https://doi.org/10.1016/j.apm.2021.01.015

Zhou Y., Huang K. On simplified deformation gradient theory of modified gradient elastic Kirchhoff–Love plate // European Journal of Mechanics. A Solids. 2023. Vol. 100. Art. N 105014. https://doi.org/10.1016/j.euromechsol.2023.105014

Бахарев Ф. Л., Назаров С. А. Асимптотика собственных чисел длинных пластин Кирхгофа с защемленными краями // Математический сборник. 2019. Т. 210. № 4. С. 3–26. https://doi.org/10.4213/sm9008

Назаров С. А. Осреднение пластин Кирхгофа с осциллирующими кромками и точечными опорами // Изв. РАН. Сер. матем. 2020. Т. 84. Вып. 4. С. 110–168. https://doi.org/10.4213/im8854

Гомес Д., Назаров С. А., Перес М.-Е. Точечное крепление пластины Кирхгофа вдоль ее кромки // Записки научных семинаров Санкт-Петербургского отделения Математического института им. В. А. Стеклова РАН. 2020. Т. 493. С. 107–137.

Голоскоков Д. П., Матросов А. В., Олемской И. В. Изгиб защемленной тонкой изотропной пластины методом Канторовича с использованием специальных полиномов // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2023. Т. 19. Вып. 4. C. 423–442. https://doi.org/10.21638/11701/spbu10.2023.401

Бахвалов Н. С., Жидков Н. П., Кобельков Г. М. Численные методы: учебник. 9-е изд. М.: Лаборатория знаний, 2020. 636 с.

Ventsel E., Krauthammer Th. Thin plates and shells. Theory: analysis and applications. Boca Raton: CRC Press, 2001. 688 p.

Liu S., Trenkler G. Hadamard, Khatri–Rao, Kronecker and other matrix products // International Journal of Information and Systems Sciences. 2008. Vol. 4. N 1. P. 160–177.

Shen J., Tang T., Wang L. Spectral methods. Heidelberg; Berlin: Springer, 2011. 472 p. https://doi.org/10.1007/978-3-540-71041-7

Mason J., Handscomb D. Chebyshev polynomials. Boca Raton: CRC Press, 2003. 360 p.

Laureano R. W., Mantari J. L., Yarasca J., Oktem A. S., Monge J., Zhou X. Boundary discontinuous Fourier analysis of clamped isotropic and cross-ply laminated plates via Unified Formulation // Composite Structures. 2024. Vol. 328. Art. N 117736. https://doi.org/10.1016/j.compstruct.2023.117736


References

Timoshenko S. P., Woinowsky-Krieger S. Theory of plates and shells. New York, McGraw-Hill Press, 1959, 580 p.

Golushko S. K., Idimeshev S. V., Shapeev V. P. Metod kollokatsii i naimen'shikh neviazok v prilozhenii k zadacham mekhaniki izotropnykh plastin [Application of collocations and least residuals method to problems of the isotropic plates theory]. Computational Technologies, 2013, vol. 18, no. 6, pp. 31–43. (In Russian)

Shapeev V. P., Bryndin L. S., Belyaev V. A. hp-Variant metoda kollokatsii i naimen'shikh kvadratov s integral'nymi kollokatsiiami reshenia bigarmonicheskogo uravnenia [The hp-version of the least-squares collocation method with integral collocation for solving a biharmonic equation]. Journal of Samara State Technical University. Series Physical and Mathematical Sciences, 2022, vol. 26, no. 3, pp. 556–572. https://doi.org/10.14498/vsgtu1936 (In Russian)

Goloskokov D. P., Matrosov A. V. Metod nachal'nykh funktsii v raschete izgiba zashchemlennoi po konturu tonkoj ortotropnoj plastinki [The method of initial functions in calculating the bending of a thin orthotropic plate clamped along the contour]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2021, vol. 17, iss. 4, pp. 330–344. https://doi.org/10.21638/11701/spbu10.2021.402 (In Russian)

Lakshmi G. V. R., Gupta N. Bending of fully clamped orthotropic rectangular thin plates using finite continuous ridgelet transform. Materials Today: Proceedings, 2021, vol. 47, pp. 4199–4205. https://doi.org/10.1016/j.matpr.2021.04.458

Li R., Zhong Y., Tian B., Liu Y. On the finite integral transform method for exact bending solutions of fully clamped orthotropic rectangular thin plates. Applied Mathematics Letters, 2009, vol. 22, pp. 1821–1827. https://doi.org/10.1016/j.aml.2009.07.003

Xu Q., Yang Z., Ullah S., Jinghui Z., Gao Y. Analytical bending solutions of orthotropic rectangular thin plates with two adjacent edges free and the others clamped or simply supported using finite integral transform method. Advances in Civil Engineering, 2020, pp. 1–11. https://doi.org/10.1155/2020/8848879

Golushko S. K., Idimeshev S. V., Shapeev V. P. Razrabotka i primenenie metoda kollokatsii i naimen'shikh neviazok k resheniyu zadach mekhaniki anizotropnykh sloistykh plastin [Development and application of collocations and least residuals method to the solution of problems in mechanics of anisotropic laminated plates]. Computational Technologies, 2014, vol. 19, no. 5, pp. 24–36. (In Russian)

Khludnev A. M. O ravnovesii plastiny s tonkim zhestkim vkliucheniem i svobodnym kraem [Equilibrium problems for elastic plate with thin rigid inclusion and free edge]. Mathematical notes of M. K. Ammosov North-Eastern Federal University, 2021, vol. 28, no. 3, pp. 105–120. https://doi.org/10.25587/SVFU.2021.64.10.007 (In Russian)

Markous N. A. Boundary mesh free method with distributed sources for Kirchhoff plate bending problems. Applied Mathematical Modelling, 2021, vol. 94, pp. 139–151. https://doi.org/10.1016/j.apm.2021.01.015

Zhou Y., Huang K. On simplified deformation gradient theory of modified gradient elastic Kirchhoff–Love plate. European Journal of Mechanics a Solids, 2023, vol. 100, art. no. 105014. https://doi.org/10.1016/j.euromechsol.2023.105014

Bakharev F. L., Nazarov S. A. Asimptotika sobstvennykh chisel dlinnykh plastin Kirkhgofa s zashchemlennymi kraiami [Eigenvalue asymptotics of long Kirchhoff plates with clamped edges]. Matematicheskii Sbornik, 2019, vol. 210, no. 4, pp. 3–26. https://doi.org/10.4213/sm9008 (In Russian)

Nazarov S. A. Osrednenie plastin Kirhgofa s ostsilliruiushchimi kromkami i tochechnymi oporami [Homogenization of Kirchhoff plates with oscillating edges and point supports]. Izvestia Rossiiskoi akademii nauk. Seria Matematicheskaya [Proceedings of Russian Academy of Sciences. Series Mathematical], 2020, vol. 84, iss. 4, pp. 110–168. https://doi.org/10.4213/im8854 (In Russian)

Gomez D., Nazarov S. A., Perez M.-E. Tochechnoe kreplenie plastiny Kirhgofa vdol’ ee kromki [Pointwise fixation along the edge of the Kirchhoff plate]. Zapiski nauchnykh seminarov Sankt-Peterburgskogo otdeleniia Matematicheskogo instituta im. V. A. Steklova RAN [ Transactions of Scientifics seminars of St. Petersburg Department of V. A. Steklov Mathematical Institute of the Russian Academy of Sciences], 2020, vol. 493, pp. 107–137. (In Russian)

Goloskokov D. P., Matrosov A. V., Olemskoy I. V. Izgib zashchemlennoi tonkoi izotropnoi plastiny metodom Kantorovicha s ispol'zovaniem spetsial'nykh polinomov [Bending of a clamped thin isotropic plate by the Kantorovich method using special polynomials]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2023, vol. 19, iss. 4, pp. 423–442. https://doi.org/10.21638/11701/spbu10.2023.401 (In Russian)

Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M. Chislennye metody [Numerical methods]. 9th ed. Moscow, Laboratoria znanii Publ., 2020, 636 p. (In Russian)

Ventsel E., Krauthammer Th. Thin plates and shells. Theory: Analysis and applications. Boca Raton, CRC Press, 2001, 688 p.

Liu S., Trenkler G. Hadamard, Khatri–Rao, Kronecker and other matrix products. International Journal of Information and Systems Sciences, 2008, vol. 4, no. 1, pp. 160–177.

Shen J., Tang T., Wang L. Spectral methods. Heidelberg, Berlin, Springer, 2011, 472 p. https://doi.org/10.1007/978-3-540-71041-7

Mason J., Handscomb D. Chebyshev polynomials. Boca Raton, CRC Press, 2003, 360 p.

Laureano R. W., Mantari J. L., Yarasca J., Oktem A. S., Monge J., Zhou X. Boundary discontinuous Fourier analysis of clamped isotropic and cross-ply laminated plates via unified formulation. Composite Structures, 2024, vol. 328, art. no. 117736. https://doi.org/10.1016/j.compstruct.2023.117736

Published

2024-10-31

How to Cite

Germider, O. V., & Popov , V. N. (2024). Mathematical modeling of bending of a thin orthotropic plate clamped along the contour. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 20(3), 310–323. https://doi.org/10.21638/spbu10.2024.301

Issue

Section

Applied Mathematics