Cooperative game theory methods for determining text complexity
DOI:
https://doi.org/10.21638/11701/spbu10.2023.407Abstract
We propose a method for estimating the complexity of texts based on the methods of cooperative game theory. The players in this game are the lengths of words in the text. The game itself is represented as a voting game in which the value of a player is determined by the number of coalitions in which the player is key. The ranks of the players are formed by computing the Shepley — Schubik value or the Banzaf index in a voting game with a given voting threshold. Thus, a vector of Shepley — Schubik or Banzaf values is assigned to each text. After that, the vector space is used to rank the texts in terms of complexity based on the expert evaluations obtained in this domain.
Keywords:
text processing, voting game, Shepley — Schubik value, Banzaf power index, clusterization
Downloads
References
Государственный образовательный стандарт по русскому языку как иностранному. Первый уровень. Второй уровень. Профессиональные модули / сост. Н. П. Андрюшина, Т. Е. Владимирова, Л. П. Клобукова. СПб.: Златоуст, 2000. 56 c.
Образовательная программа по русскому языку как иностранному. Предвузовское обучение / сост. З. И. Есина, А. С. Иванова, Н. И. Соболева и др. М.: Изд-во Российского университета Дружбы народов им. Патриса Лумумбы, 2001. 137 c.
Майер Р. В. Дидактическая сложность учебных текстов и ее оценка. Глазов: Изд-во Глазовского государственного педагогического университета, 2020. 149 с.
Gunning R. The technique of clear writing. New York: McGraw-Hill, 1952. 289 p.
Flesch R. A new readability yardstick // Journal of Applied Psychology. 1948. N 3. P. 221–233.
Оборнева И. В. Математическая модель оценки учебных текстов // Вестник Московского государственного педагогического университета. Сер. Информатика и информатизация образования. 2005. № 1 (4). C. 141–147.
Coleman M., Liau T. L. A computer readability formula designed for machine scoring // Journal of Applied Psychology. 1975. N 60. P. 283–284.
Тексты для обучения русскому языку в качестве иностранного. URL: https://github.com/arkty/ru_learning_data (дата обращения: 14 августа 2023 г.).
Мазалов В. В. Математическая теория игр и приложения: учеб. пособие. 2-е изд., стер. СПб.: Лань, 2016. 448 с.
Molinero X., Laamiri A., Riquelme F. Readability and power indices // The Fifteenth International Conference on Game Theory and Management (GTM 2021). St. Petersburg, 2021. P. 7.
Мазалов В. В., Хитрая В. А., Хитрый А. В. Методы теории кооперативных игр в задаче ранжирования текстов // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2022. Т. 18. Вып. 1. C. 63–78. https://doi.org/10.21638/11701/spbu10.2022.105
Kondratev A. A., Mazalov V. V. Tournament solutions based on cooperative game theory // International Journal of Game Theory. 2020. Vol. 49. P. 119–145.
Алескеров Ф. Т., Хабина Е. Л., Шварц Д. А. Бинарные отношения, графы и коллективные решения. Примеры и задачи: учеб. пособие для вузов. М.: Юрайт, 2023. 458 с.
Bogomolnaia A., Jackson M. O. The stability of hedonic coalition structures // Games Econ. Behav. 2002. Vol. 38. N 2. P. 201–230.
References
it Gosudarstvennyj obrazovatel'nyj standart po russkomu yazyku kak inostrannomu. Pervyj uroven'. Vtoroj uroven'. Professional'nye moduli [ State educational standard for Russian as a foreign language. First level. Second level. Professional modules]. Compilers: N. P. Andryushina, T. E. Vladimirova, L. P. Klobukova. St. Petersburg, Zlatoust Publ., 2000, 56 p. (In Russian)
it Obrazovatel'naya programma po russkomu yazyku kak inostrannomu. Predvuzovskoe obuchenie [ Educational program on Russian as a foreign language. Pre-university education]. Compilers: Z. I. Esina, A. S. Ivanova, N. I. Soboleva. Мoscow, Patrice Lumumba Peoples’ Friendship University of Russian Press, 2001, 137 p. (In Russian)
Majer R. V. Didakticheskaya slozhnost' uchebnyh tekstov i ee ocenka [ Didactic complexity of educational texts and its assessment]. Glazov, Glazovskiy State Pedagogical University Press, 2020, 149 p. (In Russian)
Gunning R. The technique of clear writing. New York, McGraw-Hill Publ., 1952, 289 p.
Flesch R. A new readability yardstick. Journal of Applied Psychology, 1948, no. 3, pp. 221–233.
Oborneva I. V. Matematicheskaya model' ocenki uchebnyh tekstov [A mathematical model for evaluating instructional texts]. Vestnik of Moscow State Pedagogical University. Series Information and Informatization of education, 2005, no. 1 (4), pp. 141–147. (In Russian)
Coleman M., Liau T. L. A computer readability formula designed for machine scoring. Journal of Applied Psychology, 1975, no. 60, pp. 283–284.
it Teksty dlya obucheniya russkomu yazyku v kachestve inostrannogo [ Texts for teaching Russian as a foreign language]. Available at: https://github.com/arkty/ru_learning_data (accessed: August 14, 2023). (In Russian)
Mazalov V. V. Matematicheskaya teoriya igr i prilozheniya. Uchebnoe posobie. 2-e izd. [ Mathematical game theory and applications. Textbook]. 2nd ed. St. Petersburg, Lan’ Publ., 2016, 448 p. (In Russian)
Molinero X., Laamiri A., Riquelme F. Readability and power indices. The Fifteenth International Conference on Game Theory and Management (GTM 2021). St. Petersburg, 2021, p. 7.
Mazalov V. V., Khitraya V. A., Khitryj A. V. Metody teorii kooperativnyh igr v zadache ranzhirovaniya tekstov [Methods of cooperative game theory in the task of text ranking]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2022, vol. 18, iss. 1, pp. 63–78. https://doi.org/10.21638/11701/spbu10.2022.105 (In Russian)
Kondratev A. A., Mazalov V. V. Tournament solutions based on cooperative game theory. International Journal of Game Theory, 2020, vol. 49, pp. 119–145.
Aleskerov F. T., Habina E. L., Shvarc D. A. Binarnye otnosheniya, grafy i kollektivnye resheniya. Primery i zadachi. Uchebnoe posobie dlya vuzov [ Binary relations, graphs and collective solutions. Examples and problems. Textbook for universities]. Moscow, Yurite Publ., 2023, 458 p. (In Russian)
Bogomolnaia A., Jackson M. O. The stability of hedonic coalition structures. Games Econ. Behav., 2002, vol. 38, no. 2, pp. 201–230.
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.