Common fixed point results: New developments on commuting mappings and application in dynamic programming
DOI:
https://doi.org/10.21638/spbu10.2024.305Abstract
Based on a class of semicontinuous functions, we prove a common fixed point theorem for a pair of commuting mappings. As a consequence, we give another common fixed point for the so-called weakly contractive mappings of type ET. The proven results are established in the setting of bounded metric spaces without using neither the compactness nor the uniform convexity. Some examples are built to demonstrate the superiority of the obtained results compared to the existing ones in the literature. Furthermore, an application to a system of functional equations arising in dynamic programming is given.
Keywords:
сommon fixed point, weakly contractive maps of type ET, commuting maps, compactness, uniform convexity
Downloads
References
References
Nemytzki V. V. The fixed point method in analysis. Uspekhi matematicheskikh nauk [Russian Mathematical Surveys], 1936, vol. 1, pp. 141–174. (In Russian)
Edelstein M. On fixed and periodic points under contractive mappings. Journal of the London Mathematical Society, 1962, vol. 37, pp. 74–79.
Browder F. E. Nonexpansive nonlinear operators in a Banach space. Proceedings of the National Academy of Sciences U. S. A., 1965, vol. 54, pp. 1041–1044.
Göhde D. Zum prinzip der kontraktiven abbildung. Mathematische Nachrichten, 1965, vol. 30, pp. 251–258.
Kirk W. A. A fixed point theorem for mappings which do not increase distances. American Mathematical Monthly, 1965, vol. 72, pp. 1004–1006.
Clarkson J. A. Uniformly convex spaces. Transactions of the American Mathematical Society, 1936, vol. 40, pp. 396–414.
Jungck G. Commuting mappings and fixed points. American Mathematical Monthly, 1976, vol. 83, pp. 261–263.
Matthews S. G. Partial metric topology. Annals of the New York Academy of Sciences, 1994, vol. 728, pp. 183–197.
Ćirić L., Samet B., Aydi H., Vetro C. Common fixed points of generalized contractions on partial metric spaces and an application. Applied Mathematics and Computation, 2011, vol. 218, pp. 2398–2406.
Waszkiewicz P. Partial metrisability of continuous posets. Mathematical Structures in Computer Science, 2006, vol. 16, pp. 359–372.
Touail Y., Jaid A., El Moutawakil D. New contribution in fixed point theory via an auxiliary function with an application. Ricerche di Matematica, 2021, vol. 72, pp. 181–191.
Touail Y., El Moutawakil D. Some new common fixed point theorems for contractive selfmappings with applications. Asian-European Journal of Mathematics, 2022, vol. 15, pp. 1–14.
Touail Y., El Moutawakil D., Bennani S. Fixed point theorems for contractive selfmappings of a bounded metric space. Journal of Function Spaces, 2019, vol. 2019, pp. 1–3.
Touail Y., El Moutawakil D. Fixed point results for new type of multivalued mappings in bounded metric spaces with an application. Ricerche di Matematica, 2020, vol. 71, pp. 315–323.
Touail Y., El Moutawakil D. New common fixed point theorems for contractive self mappings and an application to nonlinear differential equations. International Journal of Nonlinear Analysis and Applications, 2021, vol. 12, pp. 903–911.
Touail Y., El Moutawakil D. Fixed point theorems for new contractions with application in dynamic programming. Vestnik of Saint Petersburg University. Mathematics, 2021, vol. 8, pp. 206–212.
Touail Y., El Moutawakil D. Fixed point theorems on orthogonal complete metric spaces with an application. International Journal of Nonlinear Analysis and Applications, 2021, vol. 12, pp. 1801–1809.
Alber Ya. I., Guerre-Delabriere S. Principle of weakly contractive maps in Hilbert spaces. Advances and Applications. Basel, Birkha"user Publ., 1997, vol. 98, pp. 7–22.
Bellman R. Dynamic Programming. Princeton, Princeton University Press, 1957, 339 p.
Bellman R., Lee E. S. Functional equations arising in dynamic programming. Aequationes Mathematicae, 1978, vol. 17, pp. 1–18.
Aamri M., El Moutawakil D. τ-Distance in general topological spaces with application to fixed point theory. Southwest Journal of Pure and Applied Mathematics, 2003, vol. 2, pp. 1–5.
Touail Y. On multivalued ⊥ψF-contractions on generalised orthogonal sets with an application to integral inclusions. Problemy analiza [Issues of Analysis], 2022, vol. 11, pp. 109–124.
Touail Y., El Moutawakil D. ⊥ψF-Contractions and some fixed point results on generalized orthogonal sets. Rendiconti del Circolo Matematico di Palermo. Series 2, 2021, vol. 70, pp. 1459–1472.
Downloads
Published
How to Cite
Issue
Section
License
Articles of "Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes" are open access distributed under the terms of the License Agreement with Saint Petersburg State University, which permits to the authors unrestricted distribution and self-archiving free of charge.