Smooth approximations of nonsmooth convex functions

Authors

  • Lyudmila N. Polyakova St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation

DOI:

https://doi.org/10.21638/11701/spbu10.2022.408

Abstract

For an arbitrary convex function, using the infimal convolution operation, a family of continuously differentiable convex functions approximating it is constructed. The constructed approximating family of smooth convex functions Kuratowski converges to the function under consideration. If the domain of the considered function is compact, then such smooth convex approximations are uniform in the Chebyshev metric. The approximation of a convex set by a family of smooth convex sets is also considered.

Keywords:

set-valued mapping, semicontinuous mapping, conjugate function, Kuratowski converge, infimal convolution operation, smooth approximation

Downloads

Download data is not yet available.
 

References

References

Bertsekas P. Convex optimization theory. Belmont, MA, Athena Scientific Publ., 2009, 444 p.

Leichtweiss K. Konvexe mengen. Berlin, Springer-Verlag Publ., 1980, 330 p.

Rockafellar R. T. Convex analysis. Princeton, Princeton University Press, 1970, 472 p.

Zillober C. Convex approximation methods for practical optimization. Operations Research Proceedings. Eds. B. Fleischmann, R. Lasch, U. Derigs, W. Domschke, U. Rieder. Berlin, Heidelberg, Springer Publ., 2001, vol. 2000, pp. 20-25. https://doi.org/10.1007/978-3-642-56656-1_4

Moreau J.-J. Proprietes des applications "prox". C. R. Acad. Sci. (Paris), 1963, vol. 256, pp. 1069-1071.

Moreau J.-J. Proximite et dualite dans un espace Hilbertien. Bull. Soc. Math. France , 1965, vol. 93, pp. 273-299.

Planiden C., Wang X. Strongly convex functions. Moreau envelopes and the generic nature of convex functions with strong minimizers. SIAM J. Optim., 2016, vol. 26 (2), pp. 1341-1364. https://doi.org/10.1137/15M1035550

Wijsman R. A. Convergence of sequences of convex sets, cones, and functions. II. Trans. Amer. Math. Soc., 1966, vol. 123, pp. 32-45.

Beer G. On convergence of closed sets in a metric space and distance functions. Bull. Australian Math. Soc., 2009, vol. 31, pp. 421-432. https://doi.org/10.1017/S0004972700009370

Kuratowski K. Topologie I et II. Warszawa, Panstwowe Wydawnictwa Naukowe Publ., 1961, 528 p. (PWN Monogr. Mat.)

Polyakova L. N. O gladkoi approksimatsii vypuklykh funktsii [On a smooth approximation of convex funchions]. VIII Moscow Internation Conference on Operations Research ( ORM2016 ). Moscow, MAKS Press, 2016, pp. 58-61. (In Russian)

Downloads

Published

2023-03-02

How to Cite

Polyakova, L. N. (2023). Smooth approximations of nonsmooth convex functions. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 18(4), 535–547. https://doi.org/10.21638/11701/spbu10.2022.408

Issue

Section

Applied Mathematics