Numerical models for analysis and adjustment of magnetic field in medical centers. I. Simulation of geomagnetic field disturbances

Authors

  • Cheikh Yatma Diop St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation; Ministry of Health and Social Action, Fann Residence, ul. Aime Cesaire, Dakar, Republic Senegal https://orcid.org/0000-0002-4700-3466
  • Marina V. Kaparkova D. V. Efremov Institute of Electrophysical Apparatus, 3, Doroga na Metallostroy, St Petersburg, 196641, Russian Federation https://orcid.org/0000-0003-1527-4015
  • Vladimir P. Kukhtin D. V. Efremov Institute of Electrophysical Apparatus, 3, Doroga na Metallostroy, St Petersburg, 196641, Russian Federation https://orcid.org/0000-0001-6925-6141
  • Anatoly A. Makarov D. V. Efremov Institute of Electrophysical Apparatus, 3, Doroga na Metallostroy, St Petersburg, 196641, Russian Federation
  • Igor Yu. Rodin D. V. Efremov Institute of Electrophysical Apparatus, 3, Doroga na Metallostroy, St Petersburg, 196641, Russian Federation https://orcid.org/0000-0003-2595-7856
  • Sergey E. Sytchevsky St Petersburg State University, 7-9, Universitetskaya nab., St Petersburg, 199034, Russian Federation; D. V. Efremov Institute of Electrophysical Apparatus, 3, Doroga na Metallostroy, St Petersburg, 196641, Russian Federation https://orcid.org/0000-0003-1527-4015
  • Alexey A. Firsov D. V. Efremov Institute of Electrophysical Apparatus, 3, Doroga na Metallostroy, St Petersburg, 196641, Russian Federation https://orcid.org/0000-0002-7846-8717

DOI:

https://doi.org/10.21638/11701/spbu10.2022.306

Abstract

The study investigates possible disturbances of the Earth’s geomagnetic field associated with ferromagnetic structures of clinical buildings. An original methodology has been applied for 3D field mapping of hospital areas in the Senegalese Radiotherapy (RT) Centre. The RT unit will be located in a bunker with thick steel walls to ensure safety of patients and staff. Steel reinforcement will provide the shielding effect lowering the field level in the therapy room. A detailed numerical model has been created to simulate an expected field map in the RT bunker. The model reflects the actual geometry and reinforcement pattern of the building as well as adopted national standards for hypomagnetic field environment. The field maps generated with the EM codes KLONDIKE and KOMPOT form a basis for validation in comparative computations with the other codes (COMSOL Multiphysics, etc).

Keywords:

steel magnetization, Earth’s geomagnetic field, field simulation

Downloads

Download data is not yet available.
 

References

Литература

Резинкина М. М., Ерисов А. В., Пелевин Д. Е., Лобжанидзе Л.Э. Экспериментальное исследование влияния индуцированной и остаточной намагниченности ферромагнитных конструкций на ослабление геомагнитного поля в жилых помещениях // Вестник Харьковск. политехнич. ин-та. 2009. Вып. 41. С. 111-120.

Розов В. Ю., Завальный А. В., Золотов С. М., Грецких С. В. Методы нормализации статического геомагнитного поля в жилых домах // Електротехнiка i електромеханiка. 2015. Вып. 2. С. 35-40.

Amoskov V. М., Bazarov А. М., Belyakov V. A., Gapionok Е. I., Kaparkova М. V., Kukhtin V. Р., Lamzin Е. A., Lyublin В. V., Sytchevsky S. Е. Modelling of magnetic field perturbations in electrophysical devices due to the steel reinforcement of buildings // Technical Physics. 2017. Vol. 62. N 10. P. 1466-1472. https://doi.org/10.1134/S1063784217100048

Amoskov V., Bazarov A., Kaparkova M., Kukhtin V., Lamzin E., Lyublin B., Belyakov V., Sytchevsky S., Gribov Y. Modeling magnetic effects of steel rebar of concrete surroundings for electrophysical apparatus // RuPAC. 2016. THPSC007. C. 553-555. https://doi.org/10.18429/JACoW-RuPAC2016-THPSC007

Amoskov V., Bazarov A., Belyakov V., Gapionok E., Gribov Y., Kaparkova M., Kukhtin V., Lamzin E., Lyublin B., Ovsyannikov D., Sytchevsky S. Calculation of magnetic field from steel rebar of building with machine producing high stray field // Fusion Eng. Des. 2018. Vol. 135. P. 165-173. https://doi.org/10.1016/j.fusengdes.2018.07.026

Официальный сайт ИТЭР 26.06.2021 г. URL: www.iter.org (дата обращения: 26.06.2021 г.).

Amoskov V. М., Belov А. V., Belyakov V. A., Gapionok Е. I., Gribov Y. V., Kukhtin V. Р., Lamzin Е. A., Mita Y., Ovsyannikov A. D., Ovsyannikov D. A., Patisson L., Sytchevsky S. E., Zavadskiy S. V. Magnetic model MMTC-2.2 of ITER tokamak complex // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2019. Т. 15. Вып. 1. С. 5-21. https://doi.org/10.21638/11702/spbu10.2019.101

Amoskov V., Belov A., Belyakov V., Gribov Y., Kukhtin V., Lamzin E., Maximenkova N., Sytchevsky S. Stray magnetic field produced by ITER Tokamak Complex // Plasma Devices Oper. 2009. Vol. 17. N 4. P. 230-237.

Conley С. C. A review of the biological effects of very low magnetic fields: Report NASA TN D-5902. Washington, D. C.: National Aeronautics and Space Administration, 1970. N 20546. 25 p.

Wang X., Li В., Xu M., Li D., Jiang J. Long-term memory was impaired in one-trial passive avoidance task of day-old chicks hatching from hypomagnetic field space // China Sci. Bull. 2003. Vol. 48. N 22. P. 2454-2457. https://doi.org/10.1360/03wc0231

Zhang B., Lu H., Xi W., Zhou X., Xu S., Zhang K, Jiang J., Li Y., Guo A. Exposure to hypomagnetic field space for multiple generations causes amnesia in Drosophila melanogaster ff Neuroscience Letters. 2004. Vol. 371. N 2-3. P. 190-195. https://doi.Org/10.1016/j.neulet.2004.08.072

Zhang X., Li J.-F., Wu Q.-J., Li B., Jiang J. Effects of hypomagnetic field in noradrenergic activities in the brainstem of golden hamster // Bioelectromagnetics. 2007. Vol. 28. P. 155-158. https://doi.org/10.1002/bem.20290

Binhi V. N., Prato F. S. Biological effects of the hypomagnetic field. An analytical review of experiments and theories // PLoS One. 2017. Vol. 12. N 6. P. 1-51. https://doi.org/10.1371/journal.pone.0179340

Johnson-Groh M., Merzdorf J. NASA’s Goddard Space Flight Center, Greenbelt. URL: https://www. nasa.gov/feature/nasa-researchers-track-slowly-splitting-dent-in-earth-s-magnetic-field (дата обращения: 19.08.2020 г.).

Ahmad M., Galland P., Ritz T., Wiltschko R., Wiltschko W. Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana // Planta. 2007. Vol. 225. P. 615-624. https://doi.org/10.1007/s00425-006-0383-0

Buchachenko A. L., Kuznetsov D. A. Magnetic field affects enzymatic ATP synthesis // Journal of Amer. Chem. Soc. 2008. Vol. 130. N 39. P. 12868-12869. https://doi.org/10.1021/ja804819k

Hore P. J. Are biochemical reactions affected by weak magnetic fields? // Proceedings Natl. Acad. Sci. USA. 2012. January 31. Vol. 109. N 5. P. 1357-1358. https://doi.org/10.1073/pnas.1120531109

Servick K. Humans — like other animals — may sense Earth’s magnetic field // Science. 2019. Vol. 363. Iss. 6433. P. 1257-1258. https://doi.org/10.1126/science.363.6433.1257

Sarimov R. M., Binhi V. N., Milyaev V. A. The influence of geomagnetic field compensation on human cognitive processes // Biophysics. 2008. Vol. 53. P. 433-441. https://doi.org/10.1134/S0006350908050205

Van Huizen A. V., Morton J. M., Kinsey L. J., Von Kannon D. G., Saad M. A., Birkholz T. R., Czajka J. M., Cyrus J., Barnes F. S., Beane W. S. Weak magnetic fields alter stem cell-mediated growth // Science Advances. 2019. Vol. 5. Iss. 1. Article N 7201. https://doi.org/10.1126/sciadv.aau7201

Shimojo S., Wu D.-A., Kirschvink J. New evidence for a human magnetic sense that lets your brain detect the Earth’s magnetic field // The Conversation. URL: https://theconversation.com/ new-evidence-for-a-human-magnetic-sense-that-lets-your-brain-detect-the-earths-magnetic-field-113536 (дата обращения: 18.03.2019 г.).

Thoss F., Bartsch B. The human visual threshold depends on direction and strength of a weak magnetic field // Journal of Comparative Physiology A. 2003. Vol. 189. P. 777-779. https://doi.org/10.1007/s00359-003-0450-y

Походзей Л. В. Гипогеомагнитные условия как фактор риска для здоровья человека // Труды II Междунар, конференции «Электромагнитные поля и здоровье человека». М., 1999. С. 135-136.

Нахильницкая 3. Н., Мастрюкова В. М., Андрианова Л. А. Бородкина А. Т. Реакция организма на воздействие «нулевого» магнитного поля // Космическая биология и авиакосмическая медицина. 1978. № 2. С. 74-76.

Санитарно-эпидемиологические правила и нормативы. СанПиН 2.1.8/2.2.4.2490-09 «Электромагнитные поля в производственных условиях». Утв. Глав. гос. сан. врачом Российской Федерации 2 марта 2009 г.; введ. 15 марта 2009 г. М.: Роспотребнадзор, 2009. 1 с.

Санитарно-эпидемиологические правила и нормативы СанПиН 2.1.8/2.2.4.2489-09 «Гипогеомагнитные поля в производственных, жилых и общественных зданиях и сооружениях». Утв. Глав, гос. сан. врачом Российской Федерации 2 марта 2009 г.; введ. 15 марта 2009 г. М.: Роспотребнадзор, 2009. 13 с.

Korovkin N., Diop С. Y. Minimization of electromagnetic fields intensity and optimization of electrical wiring networks in healthcare facilities // 2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW). 2016. P. 604-607. https://doi.org/10.1109/EIConRusNW.2016.7448255

World magnetic model calculator. URL: www.geomag.bgs.ac.uk/data_service/models_compass/igrf_calc.html (дата обращения: 26.06.2021 г.).

Amoskov V., Belov A., Belyakov V., Gribov Y., Kukhtin V., Lamzin E., Maximenkova N., Sytchevsky S. Assessment of error field from ferromagnetic surrounding of ITER tokamak: ferromagnetic rebar of Tokamak Complex building // Plasma Devices Oper. 2008. Vol. 16. N 4. P. 225-233. https://doi.org/10.1080/10519990802433875

Amoskov V., Belov A., Belyakov V., Gribov Y., Kukhtin V., Lamzin E., Maximenkova N., Sytchevsky S. Stray magnetic field produced by ITER tokamak complex // Plasma Devices Oper. 2009. Vol. 17. P. 230-237. https://doi.org/10.1080/10519990903043599

Amoskov V., Belov A., Belyakov V., Gribov Y., Kavin A., Kukhtin V., Lamzin E., Lobanov K., Maximenkova N., Mineev A., Sytchevsky S. Stray magnetic field at plasma initiation produced by ferromagnetic elements of the ITER Tokamak Complex // Plasma Devices Oper. 2009. Vol. 17. N 4. P. 238-249. https://doi.org/10.1080/10519990903043623

Карауш С. А., Кузнецов А. В. Влияние металлических фасадных систем на геомагнитное поле внутри помещений // Вестник Томск, гос. архитектурно-строит. ун-та. 2013. Т. 38. № 1. С. 83-87.

Amoskov V., Belov A., Belyakov V., Gribov Y., Kukhtin V., Lamzin E., Maximenkova N., Sytchevsky S. Assesment of error field from solitary ferromagnetic elements located outside of ITER tokamak // Plasma Devices Oper. 2008. Vol. 16. P. 171-179. https://doi.org/10.1080/10519990802249289

Amoskov V., Gribov Y., Lamzin E., Sythevsky S. Assessment of n=1 “overlap” error field produced by localized steel objects placed at different levels of ITER Tokamak building // Fusion Eng. Des. 2019. Vol. 148. Article N 111271. https://doi.org/10.1016/j.fusengdes.2019.111271

Amoskov V. M., Belov A. V., Belyakov V. A., Belyakova T. F., Gribov Yu. A., Kukhtin V. P., Lamzin E. A., Sytchevsky S. E. Computation technology based on KOMPOT and KLONDIKE codes for magnetostatic simulations in tokamaks // Plasma Devices Oper. 2008. Vol. 16. P. 89-103. https://doi.org/10.1080/10519990802018023

Беляков В. А., Сычевский С. Е. Особенности технологии численного моделирования электромагнитных полей термоядерных реакторов на основе токамаков // Известия Рос. академии наук. Энергетика. 2014. № 1. С. 141-149.

Розов В. Ю., Левина С. В. Моделирование статического геомагнитного поля внутри помещений современных жилых домов // Технична Електродинамiка. 2014. № 4. С. 8-10.


References

Rezinkina M. M., Erisov A. V., Pelevin D. E., Lobjanidze L. E. Experimentalnoe issledovanie vliyaniya indutsirovannoj i ostatochnoj namagnichennosti ferromagnitnyh konstruktsij na oslablenie geomagnitnogo polya v zhilyh pometsheniyah [Experimental researches of influence of induced and residual magnetizing in ferromagnetic constructions on weakening of geomagnetic field in dwellings apartments]. Vestnik of Khar’kov Polytechnical Institute, 2009, iss. 41, pp. 111-120. (In Russian)

Rozov V. Yu., Zavalnyi A. V., Zolotov S. M., Gretskikh S. V. Metody normalizatsii staticheskogo geomagnitnogo polyav zhilyh gomah [The normalization methods of the static geomagnetic field inside houses]. Elektrotekhnika i elektromekhanika [Electrotechnics and Electromechanics], 2015, iss. 2, pp. 35-40. (In Russian)

Amoskov V. M., Bazarov A. M., Belyakov V. A., Gapionok E. I., Kaparkova M. V., Kukhtin V. P., Lamzin E. A., Lyublin В. V., Sytchevsky S. E. Modelling of magnetic field perturbations in electrophysical devices due to the steel reinforcement of buildings. Technical Physics, 2017, vol. 62, no. 10, pp. 1466-1472. https://doi.org/10.1134/S1063784217100048

Amoskov V., Bazarov A., Kaparkova M., Kukhtin V., Lamzin E., Lyublin B., Belyakov V., Sytchevsky S., Gribov Y. Modeling magnetic effects of steel rebar of concrete surroundings for electrophysical apparatus. Proceedings RuPAC, 2016, THPSC007, pp. 553-555. https://doi.org/10.18429/JACoW-RuPAC2016-THPSC007

Amoskov V., Bazarov A., Belyakov V., Gapionok E., Gribov Y., Kaparkova M., Kukhtin V., Lamzin E., Lyublin B., Ovsyannikov D., Sytchevsky S. Calculation of magnetic field from steel rebar of building with machine producing high stray field. Fusion Eng. Des., 2018, vol. 135, pp. 165-173. https://doi.Org/10.1016/j.fusengdes.2018.07.026

Official cite of ITER organization. Available at: www.iter.org (accessed: June 26, 2021).

Amoskov V. M., Belov A. V., Belyakov V. A., Gapionok E. L, Gribov Y. V., Kukhtin V. P., Lamzin E. A., Mita Y., Ovsyannikov A. D., Ovsyannikov D. A., Patisson L., Sytchevsky S. E., Zavadskiy S. V. Magnetic model MMTC-2.2 of ITER tokamak complex. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2019, vol. 15, iss. 1, pp. 5-21. https://doi.org/10.21638/11702/spbu10.2019.101

Amoskov V., Belov A., Belyakov V., Gribov Y., Kukhtin V., Lamzin E., Maximenkova N., Sytchevsky S. Stray magnetic field produced by ITER Tokamak Complex. Plasma Devices Oper., 2009, vol. 17, no. 4, pp. 230-237.

Conley С. C. A review of the biological effects of very low magnetic fields. Report NASA TN D-5902. Washington, D. C., National Aeronautics and Space Administration Publ., 1970, no. 20546, 25 p.

Wang X., Li B., Xu M., Li D., Jiang J. Long-term memory was impaired in one-trial passive avoidance task of day-old chicks hatching from hypomagnetic field space. China Sci. Bull., 2003, vol. 48, no. 22, pp. 2454-2457. https://doi.org/10.1360/03wc0231

Zhang B., Lu H., Xi W., Zhou X., Xu S., Zhang K., Jiang J., Li Y., Guo A. Exposure to hypomagnetic field space for multiple generations causes amnesia in Drosophila melanogaster. Neuroscience Letters, 2004, vol. 371, no. 2-3, pp. 190-195. https://doi.org/10.1016/j.neulet.2004.08.072

Zhang X., Li J.-F., Wu Q.-J., Li B., Jiang J. Effects of hypomagnetic field in noradrenergic activities in the brainstem of golden hamster. Bioelectromagnetics, 2007, vol. 28, pp. 155-158. https://doi.org/10.1002/bem.20290

Binhi V. N., Prato F. S. Biological effects of the hypomagnetic field. An analytical review of experiments and theories. PLoS One, 2017, vol. 12, no. 6, pp. 1-51. https://doi.org/10.1371/journal.pone.0179340

Johnson-Groh M., Merzdorf J. NASA’s Goddard Space Flight Center, Greenbelt. Available at: https://www.nasa.gov/feature/nasa-researchers-track-slowly-splitting-dent-in-earth-s-magnetic-field (accessed: August 19, 2020).

Ahmad M., Galland P., Ritz T., Wiltschko R., Wiltschko W. Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana. Planta, 2007, vol. 225, pp. 615-624. https://doi.org/10.1007/s00425-006-0383-0

Buchachenko A. L., Kuznetsov D. A. Magnetic field affects enzymatic ATP synthesis. Journal of Amer. Chern. Soc., 2008, vol. 130, no. 39, pp. 12868-12869. https://doi.org/10.1021/ja804819k

Hore P. J. Are biochemical reactions affected by weak magnetic fields? Proceedings Natl. Acad. Sci. USA, 2012, January 31, vol. 109, no. 5, pp. 1357-1358. https://doi.org/10.1073/pnas.1120531109

Servick K. Humans — like other animals — may sense Earth’s magnetic field. Science, 2019, vol. 363, iss. 6433, pp. 1257-1258. https://doi.org/10.1126/science.363.6433.1257

Sarimov R. M., Binhi V. N., Milyaev V. A. The influence of geomagnetic field compensation on human cognitive processes. Biophysics, 2008, vol. 53, pp. 433-441. https://doi.org/10.1134/S0006350908050205

Van Huizen A. V., Morton J. M., Kinsey L. J., Von Kannon D. G., Saad M. A., Birkholz T. R., Czajka J. M., Cyrus J., Barnes F. S., Beane W. S. Weak magnetic fields alter stem cell-mediated growth. Science Advances, 2019, vol. 5, iss. 1, Article no. 7201. https://doi.org/10.1126/sciadv.aau7201

Shimojo S., Wu D.-A., Kirschvink J. New evidence for a human magnetic sense that lets your brain detect the Earth’s magnetic field. The Conversation. Available at: https://theconversation.com/new-evidence-for-a-human-magnetic-sense-that-lets-your-brain-detect-the-earths-magnetic-fleld-113536 (accessed: March 18, 2019).

Thoss F., Bartsch B. The human visual threshold depends on direction and strength of a weak magnetic field. Journal of Comparative Physiology A, 2003, vol. 189, pp. 777-779. https://doi.org/10.1007/s00359-003-0450-y

Pokhodzey L. V. Hipogeomagnitnye usloviya как faktor riska dlya zdoroviya cheloveka [Hypogeo-magnetic field as health hazard]. Trudy II Mezhdunarodnoi konferentsii “Elektromagnitnie polia i zdarovie cheloveka” [Transactions of II Intern. Conference “Electromagnetic fields and health to means”]. Moscow, 1999, pp. 135-136. (In Russian)

Nakhilnitzkaya Z. N., Mastryukova V. M., Andrianova L. A., Borodkina A. T. Reaktsiya organizma na vozdejsvie “nulevogo” magnitnogo polya [Biological response to the “zero” magnetic field]. Kosmicheskaya biologiya i aviakosmicheskaya meditsina [Cosmical Biology and Aviacosmical Medicine], 1978, no. 2, pp. 74-76. (In Russian)

Sanitarno-epidemiologicheskie pravila i normativy [National hygienic and sanitary standards and codes], SanPiN 2.1.8/2.2.4.2490-09. Elektromagnitnye polya v proizvodstvennyh usloviyah [Industrial environment. Electromagnetic fields]. Moscow, Rospotrebnadzor Publ., 2009, 1 p. (In Russian)

Sanitarno-epidemiologicheskie pravila i normativy [National hygienic and sanitary standards and codes], SanPiN 2.1.8/2.2.4.2489-09. Gipogeomagnitnye polya v proizvodstvennyh, zhilyh i obtshestvennyh zdaniyah i sooruzheniyah [Hypomagnetic field in industrial, dwelling and public buildings]. Moscow, Rospotrebnadzor Publ., 2009, 13 p. (In Russian)

Korovkin N., Diop C. Y. Minimization of electromagnetic fields intensity and optimization of electrical wiring networks in healthcare facilities. 2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (EIConRusNW), 2016, pp. 604-607. https://doi.org/10.1109/EIConRusNW.2016.7448255

World magnetic model calculator. Available at: www.geomag.bgs.ac.uk/data_service/models_compass/igrf_calc.html (accessed: June 26, 2021).

Amoskov V., Belov A., Belyakov V., Gribov Y., Kukhtin V., Lamzin E., Maximenkova N., Sytchevsky S. Assessment of error field from ferromagnetic surrounding of ITER tokamak: ferromagnetic rebar of Tokamak Complex building. Plasma Devices Oper., 2008, vol. 16, no. 4, pp. 225-233. https://doi.org/10.1080/10519990802433875

Amoskov V., Belov A., Belyakov V., Gribov Y., Kukhtin V., Lamzin E., Maximenkova N., Sytchevsky S. Stray magnetic field produced by ITER tokamak complex. Plasma Devices Oper., 2009, vol. 17, pp. 230-237. https://doi.org/10.1080/10519990903043599

Amoskov V., Belov A., Belyakov V., Gribov Y., Kavin A., Kukhtin V., Lamzin E., Lobanov K., Maximenkova N., Mineev A., Sytchevsky S. Stray magnetic field at plasma initiation produced by ferromagnetic elements of the ITER Tokamak Complex. Plasma Devices Oper., 2009, vol. 17, no. 4, pp. 238-249. https://doi.org/10.1080/10519990903043623

Karaush S. A., Kuznetsov A. V. Vliyanie metallicheskih fasadnyh sistem na geomagnitnoe pole vnutri pometshenij [Effect of metal facade systems on geomagnetic field of indoors]. Vestnik of Tomsk State Architectural and Building University, 2013, vol. 38, no. 1, pp. 83-87. (In Russian)

Amoskov V., Belov A., Belyakov V., Gribov Y., Kukhtin V., Lamzin E., Maximenkova N., Sytchevsky S. Assesment of error field from solitary ferromagnetic elements located outside of ITER tokamak, Plasma Devices Oper., 2008, vol. 16, pp. 171-179. https://doi.org/10.1080/10519990802249289

Amoskov V., Gribov Y., Lamzin E., Sythevsky S. Assessment of n =1 “overlap” error field produced by localized steel objects placed at different levels of ITER Tokamak building. Fusion Eng. Des., 2019, vol. 148, Article no. 111271. https://doi.Org/10.1016/j.fusengdes.2019.111271

Amoskov V. M., Belov A. V., Belyakov V. A., Belyakova T. F., Gribov Yu. A., Kukhtin V. P., Lamzin E. A., Sytchevsky S. E. Computation technology based on KOMPOT and KLONDIKE codes for magnetostatic simulations in tokamaks. Plasma Devices Oper., 2008, vol. 16, pp. 89-103. https://doi.org/10.1080/10519990802018023

Belyakov V. A., Sytchevsky S. E. Osobennosti tekhnologii chislennogo modelirovaniya elektromagnitnyh polej termoyadernyh reaktorov na osnove tokamakov [Aspects of EM field simulations for designing, analyzing and optimizing the tokamak-type fusion reactors]. Izvestiya Rossiiskoi akademii nauk. Energetika [Proceedings of Russian Academy of Sciences. Energetics], 2014, no. 1, pp. 141-149. (In Russian)

Rozov V. Y., Levina S. V. Modelirovanie staticheskogo geomagnitnogo polya vnutri pometshenij sovremennyh zhilyh domov [Modeling of the static geomagnetic field indoor dwelling houses]. Tehnichna Electrodinamika, 2014, no. 4, pp. 8-10. (In Russian)

Published

2022-09-29

How to Cite

Diop, C. Y., Kaparkova, M. V., Kukhtin, V. P., Makarov, A. A., Rodin, I. Y., Sytchevsky, S. E., & Firsov, A. A. (2022). Numerical models for analysis and adjustment of magnetic field in medical centers. I. Simulation of geomagnetic field disturbances. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 18(3), 365–378. https://doi.org/10.21638/11701/spbu10.2022.306

Issue

Section

Computer Science

Most read articles by the same author(s)