Power generalization of the linear constitutive equations of heat and mass transfer and the variants of writing the equations of momentum transfer, heat and diffusion arising from them

Authors

  • Valery A. Pavlovsky St Petersburg State Marine Technical University, 3, Lotsmanskaya ul., St Petersburg, 190121, Russian Federation https://orcid.org/0000-0002-3102-3681

DOI:

https://doi.org/10.21638/11701/spbu10.2022.407

Abstract

Currently, when solving problems of heat and mass transfer, linear constitutive equations are used - in hydrodynamics, the viscous stress tensor is proportional to the strain rate tensor (Newton's rheological ratio), in heat transfer, the heat flux density is linearly related to the temperature gradient (Fourier's heat conduction law), in mass transfer, the diffusion flux density proportional to the concentration gradient (Fick's law). When writing these linear governing equations, proportionality coefficients are used, which are called the viscosity coefficient, thermal conductivity coefficient and diffusion coefficient, respectively. Such constitutive equations are widely used to describe the processes of heat and mass transfer in a laminar flow regime. For turbulent flows, these equations are unsuitable, it is necessary to introduce into consideration the empirical turbulent coefficients of viscosity μt, thermal conductivity λt and diffusion Dt. However, to describe turbulent flows, it is possible to go in another way - to modify the linear constitutive relations by giving them a nonlinear power-law form. Two-parameter power-law generalizations of Newton's, Fourier's and Fick's formulas for shear stress, heat flux density and diffusion, which, depending on the value of the exponents, can be used to describe the processes of heat and mass transfer both in laminar and turbulent fluid flow. Also, this generalization can be used to describe the behavior of power-law fluids and flows of polymer solutions exhibiting the Toms effect.

Keywords:

hydrodynamics, heat transfer, diffusion, Newton's, Fourier's, Fick's formulas, power generalizations, turbulence

Downloads

Download data is not yet available.
 

References

Литература

Кутателадзе С. С. Основы теории теплообмена. М: Атомиздат, 1979. 234 с.

Pavlovsky V. A. Power-law generalization of Newton’s formula for shear stress in a liquid in the form of a tensor rheological relation // Vestnik of Saint Petersburg University. Mathematics. 2022. Vol. 55. Iss. 2. P. 229-234. https://doi.org/10.1134/S1063454122020091

Павловский В. А., Кабриц С. А. Расчет турбулентного пограничного слоя плоской пластины // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2021. Т. 17. Вып. 4. С. 370-380. https://doi.org/10.21638/11701/spbu10.2021.405

Nikushchenko D. V., Pavlovsky V. A., Nikushchenko E. A. Fluid flow development in a pipe as a demonstration of a sequential 402 Change in its rheological properties // Applied Sciences. 2022. N 12(6). https://doi.org/10.3390/app12063058

Павловский В. А. Степенное обобщение формулы теплопроводности Фурье и вытекающие из него варианты для записи уравнения энергии // Морские интеллектуальные технологии. 2022. T. 2. № 2 (4). С. 133-138.

Исаченко В. П., Оcипова В. А., Сукомел А. С. Теплопередача: учебник для вузов. 4-е изд., перераб. и доп. М.: Энергоиздат, 1981. 416 с.

Попов П. В. Диффузия. М.: Моск. физ.-технич. ин-т, 2016. 94 с.

Павловский В. А., Никущенко Д. В. Вычислительная гидродинамика. Теоретические основы: учеб. пособие. СПб.: Лань, 2018. 368 с.

References

Kutateladze S. S Osnovi teorii teploobmena [ Fundamentals of the theory of heat transfer ]. Moscow, Atomizdat Publ., 1979, 234 p. (In Russian)

Pavlovsky V. A. Power-law generalization of Newton’s formula for shear stress in a liquid in the form of a tensor rheological relation. Vestnik of Saint Petersburg University. Mathematics, 2022, vol. 55, iss. 2, pp. 229-234. https://doi.org/10.1134/S1063454122020091

Pavlovsky V. A., Kabrits S. A. Raschyot tyrbulentnogo pogranichnogo sloya ploskoy plastini [Calculation of turbulent boundarylayer of a flat plate]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Sciences. Control Processes, 2021, vol. 17, iss. 4, pp. 370-380. (In Russian) https://doi.org/10.21638/11701/spbu10.2021.405

Nikushchenko D. V., Pavlovsky V. A., Nikushchenko E. A. Fluid flow development in a pipe as a demonstration of a sequential 402 Change in its rheological properties. Applied Sciences, 2022, no. 12 (6). https://doi.org/10.3390/app12063058

Pavlovsky V. A. Stepennoe obobshchenie formyli teploprovodnosti Fyr'e i vitekaushchie iz nego varianti dlya zapisi yravneniya energii [Power-law generalization of the Fourier formula for heat conduction and variants arising from it for writing the energy equation]. Marine intelligent technologies, 2022, vol. 2 (4), no. 2, pp. 133-138. (In Russian)

Isachenko V. P., Osipova V. A., Sukomel A. S. Teploperedacha [ Heat transfer ]. Moscow, Energoizdat Publ., 1981, 416 p. (In Russian)

Popov P. V. Diffyzia [ Diffusion ]. Moscow, Moscow Institute of Physics and Technology Publ., 2016, 94 p. (In Russian)

Pavlovsky V. A., Nikushhenko D. V. Vychislitelnaya gidrodinamika. Teoreticheskie osnovy [ Computational fluid dynamics. Theoretical fundamentals ]. St Petersburg, Lan’ Publ., 2018, 368 p. (In Russian)

Published

2023-03-02

How to Cite

Pavlovsky, V. A. (2023). Power generalization of the linear constitutive equations of heat and mass transfer and the variants of writing the equations of momentum transfer, heat and diffusion arising from them. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 18(4), 527–534. https://doi.org/10.21638/11701/spbu10.2022.407

Issue

Section

Applied Mathematics