To the problem of the pursuit in quasilinear differential lag games

Authors

  • Edgor M. Mukhsinov Tajik State University of Law, Business and Politics, 2, 17th mkr-n, Khujand, 735700, Republic of Tajikistan https://orcid.org/0000-0003-4503-1823

DOI:

https://doi.org/10.21638/11701/spbu10.2022.303

Abstract

In the field of the theory of differential games defined in a finite-dimensional space, fundamental works were carried out by L. S. Pontryagin, N. N. Krasovskiy, B. N. Pshenichny, L. S. Petrosyan, M. S. Nikol’skiy, N. Yu. Satimov and others. L. S. Pontryagin and his students consider differential games separately, from the point of view of the pursuer and from the point of view of the evader, which inevitably connects the differential game with two different problems. In this paper, in a Hilbert space, we consider the pursuit problem in the sense of L. S. Pontryagin for a quasilinear differential game, when the dynamics of the game is described by a differential equation of retarded type with a closed linear operator generating a strongly continuous semigroup. Two main theorems on the solvability of the pursuit problem are proved. In the first theorem, a set of initial positions is found from which it is possible to complete the pursuit with a guaranteed pursuit time. The second theorem defines sufficient conditions on the optimality of the pursuit time. The results obtained generalize the results of works by P. B. Gusyatnikov, M. S. Nikol’skiy, E. M. Mukhsinov, and M. N. Murodova, in which it is described by a differential equation of retarded type in a Hilbert space. Our results make it possible to study delayed-type conflict-controlled systems not only with lumped, but also with distributed parameters.

Keywords:

pursuit problem, delay differential game, Hilbert space, optimality of pursuit time

Downloads

Download data is not yet available.
 

References

Литература

Понтрягин Л. С., Болтянский В. Г., Гамкрелидзе Р. В., Мищенко Е. Ф. Математическая теория оптимальных процессов. М.: Наука, 1983. 393 с.

Балакришнан А. В. Прикладной функциональный анализ. М.: Наука, 1980. 384 с.

Аргучинцев А. В., Срочко В. А. Процедура регуляризации билинейных задач оптимального управления на основе конечномерной модели // Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления. 2022. Т. 18. Вып. 1. С. 179-187. https://doi.org/10.21638/11701/spbu10.2022.115

Понтрягин Л. С. Линейные дифференциальные игры преследования // Мат. сборник. 1980. Т. 112(154). № 3. С. 307-331.

Красовский Н. Н., Субботин А. И. Позиционные дифференциальные игры. М.: Наука, 1974. 456 с.

Гусятников П. Б., Никольский М. С. Об оптимальности времени преследования // Докл. АН СССР. 1969. Т. 184. № 3. С. 518-521.

Сатимов Н. Ю., Тухтасинов М. Об игровых задачах на фиксированной отрезке в управляемых эволюционных уравнениях первого порядка // Мат. заметки. 2006. Т. 80. Ж 4. С. 613-626.

Петросян Л. А. Дифференциальные игры преследования. Л.: Изд-во Ленингр. ун-та, 1977. 222 с.

Мамадалиев Н. Об одной задаче преследования с интегральными ограничениями на управления игроков // Сиб. мат. журн. 2015. Т. 56. № 1. С. 129-148. https://doi.org/10.1134/S0037446615010115

Friedman A. Differential games of purpsuit in Banach space // Journal of Math. Analysis and Applications. 1969. Vol. 25. P. 93-113.

Осипов Ю. С. К теории дифференциальных игр в системах с распределенными параметрами // Докл. АН СССР. 1975. Т. 223. № 6. С. 1314-1317.

Мухсинов Е. М. Об оптимальности времени преследования в дифференциальных играх // Управляемые системы (Новосибирск). 1982. Ж 2. С. 80-87.

Мухсинов Е. М., Муродова М. Н. Задача преследования для дифференциальной игры с запаздывающим аргументом в бесконечномерном пространстве / / Вестник Таджикского национального университета. Сер. естественных наук. 2018. Ж 3. С. 79-86.

Хилле Э., Филлипс Р. Функциональный анализ и полугруппы / пер. с англ. М.: Изд-во иностр, лит., 1962. 830 с. (Hille Е., Phillips R. Functional analysis and semi-groups.)

Nakagiri S. Structural properties of functional differential equations in Banach spaces // Journal of Math. Anal. Appl. 1988. Vol. 25. P. 353-398.

Канторович Л. В., Акилов Г. П. Функциональный анализ. М.: Наука, 1977. 744 с.

Castaing С., Valadier М. Convex analysis and measurable multifunctions // Lecture Notes Math. 1977. Vol. 580. P. 1-278.


References

Pontrjagin L. S., Boltyanskiy V. G., Gamkrelidze R. V., Mishenko E. F. Matematicheskaya teoriya optimalnikh processor [Mathematical theory of optimal processes]. Moscow, Nauka Publ., 1983, 393 p. (In Russian)

Balakrishnan A. V. Prikladnoy funcsionalniy analiz [Applied functional analysis]. Moscow, Nauka Publ., 1980, 384 p. (In Russian)

Arguchinsev A. V., Srochko V. A. Procedura reguljarizacii bilinejnyh zadach optimal’nogo upravlenija na osnove konechnomernoj modeli [Procedure for regularization of bilinear optimal control problems based on a finite-dimensional model]. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 2022, vol. 18, no. 1, pp. 179-187. https://doi.org/10.21638/11701/spbu10.2022.115 (In Russian)

Pontrjagin L. S. Linejnye differencial’nye igry presledovanija [Linear differential games of pursuit]. Matematicheskii sbornik [Mathematical collection], 1980, vol. 112(154), no. 3, pp. 307-331. (In Russian)

Krasovskiy N. N., Subbotin A. I. Pozicionnye differencial’nye igry [Positional differential games]. Moscow, Nauka Publ., 1974, 456 p. (In Russian)

Gustyanikov P. B., Nikolskiy M. S. Ob optimal’nosti vremeni presledovaniya [On the optimality of the pursuit time]. Proceedings of the USSR Academy of Sciences, 1969, vol. 184, no. 3, pp. 518-521. (In Russian)

Satimov N. Yu., Tukhtasinov M. Ob igrovvh zadachah na fiksirovannoj otrezke v upravlyaemyh evolyucionnyh uravneniyah pervogo poryadka [On game problems on a fixed interval in controlled first-order evolution equations]. Mathematical Notes, 2006, vol. 80, no. 4, pp. 613-626. (In Russian)

Petrosyan L. A. Differencial’nye igry presledovaniya [Differential pursuit games]. Leningrad, Leningrad State University Press, 1977, 222 p. (In Russian)

Mamadaliev N. Ob odnoj zadache presledovaniya s integral’nymi ogranicheniyami na upravleniya igrokov [On a pursuit problem with integral constraints on the players’ controls]. Siberian Mathematical journal, 2015, vol. 56, no. 1, pp. 129-148. https://doi.org/10.1134/S0037446615010115 (In Russian)

Friedman A. Differential games of purpsuit in Banach space. Journal of Mathematical Analysis and Applications, 1969, vol. 25, pp. 93-113.

Osipov Yu. S. К teorii differencial’nyh igr v sistemah s raspredelennymi parametrami [On the theory of differential games in systems with distributed parameters]. Proceedings of the USSR Academy of Sciences, 1975, vol. 223, no. 6, pp. 1314-1317. (In Russian)

Mukhsinov E. M. Ob optimal’nosti vremeni presledovaniya v differencial’nyh igrah [On the optimality of pursuit time in differential games]. Managed systems (Novosibirsk), 1982, no. 2, pp. SO-87. (In Russian)

Mukhsinov E. M., Murodova M. N. Zadacha presledovaniya dlya differencial’noj igry s zapazdyvayushchim argumentom v beskonechnomernom prostranstve [The pursuit problem for a delayed differential game in an infinite-dimensional space]. Bulletin of the Tajik National University. Series of natural sciences, 2018, no. 3, pp. 79-86. (In Russian)

Hille E., Phillips R. S. Functional analysis and semi-groups. New York, Colloquium Publ., 1957, 819 p. (Rus. ed.: Hille E., Phillips R. Funktsional’nyi analiz i polugruppy. Moscow, Inostr. lit. Publ., 1962, 830 p.)

Nakagiri S. Structural properties of functional differential equations in Banach spaces. Journal of Mathematical Analysis and Applications, 1988, vol. 25, pp. 353-398.

Kantorovich L. V., Akilov G. P. Funkcional’nyj analiz [Functional analysis]. Moscow, Nauka Publ., 1977, 744 p. (In Russian)

Castaing C., Valadier M. Convex analysis and measurable multifunctions. Lecture Notes Math., 1977, vol. 580, pp. 1-278.

Published

2022-09-29

How to Cite

Mukhsinov, E. M. (2022). To the problem of the pursuit in quasilinear differential lag games. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 18(3), 328–336. https://doi.org/10.21638/11701/spbu10.2022.303

Issue

Section

Applied Mathematics