Метод синтеза звука, основанный на анализе упругих напряжений в гофрированном тонкопленочном покрытии

Авторы

  • Сергей Алексеевич Костырко Университет ИТМО, Российская Федерация, 197101, Санкт-Петербург, Кронверский пр., 49 https://orcid.org/0000-0003-3074-0969
  • Борис Сергеевич Шершенков Университет ИТМО, Российская Федерация, 197101, Санкт-Петербург, Кронверский пр., 49 https://orcid.org/0009-0007-6280-6498

DOI:

https://doi.org/10.21638/11701/spbu10.2023.107

Аннотация

Изучается возможность использования модели гофрированного тонкопленочного покрытия в условиях плоской деформации для генерации и манипулирования звуком. Структура "пленка - подложка" рассматривается как многоуровневая система, в которой упругие свойства поверхностных и межфазных слоев отличаются от аналогичных свойств объемных фаз. Суперпозиция двух возмущенных полей напряжений, возникших в результате геометрических несовершенств поверхности и межфазного слоя, демонстрирует интерференционные картины поля напряжений в объемной фазе пленочного покрытия. Анализ периодического распределения напряжений в тонкой пленке вдоль линий, параллельных невозмущенным границам поверхности/интерфейса, приводит к развитию различных форм волн, плавно переходящих от поверхности к интерфейсу. Такое наблюдение позволяет сформулировать метод синтеза звука, аналогичный методу тембрального морфинга, который обеспечивает переход между двумя звуками, создавая в ходе этого процесса новые промежуточные звуки. Перспективность использования модели гофрированной тонкой пленки для генерации звука обусловлена ее сложным поведением, когда в ходе анализа напряженного состояния влияние одного параметра отражается на влияние других, что, в свою очередь, приводит к различным звуковым морфологиям.

Ключевые слова:

синтез звука, физическое моделирование, гофрированное тонкопленочное покрытие, возмущение поля напряжений

Скачивания

Данные скачивания пока недоступны.
 

Библиографические ссылки

References

Bilbao S. Numerical sound synthesis: finite difference schemes and simulation in musical acoustics. Chichester, John Wiley & Sons Publ., 2009, 456 p.

Borin G., Poli G. D., Sarti A. Algorithms and structures for synthesis using physical models. Computer Music Journal, 1992, vol. 16, pp. 30-42.

Castagn'e N., Cadoz C. A goals-based review of physical modelling. International Computer Music Conference, 2005, pp. 343-346.

Smith J. O. Physical modeling using digital waveguides. Computer Music Journal, 1992, vol. 16, pp. 74-91.

Najnudel J., H'elie T., Roze D. Simulation of the Ondes Martenot ribbon-controlled oscillator using energy-balanced modeling of nonlinear time-varying electronic components. Journal of the Audio Engineering Society, 2019, vol. 67, pp. 961-971.

Najnudel J., H'elie T., Roze D., M"uller R. Power-balanced modeling of nonlinear coils and transformers for audio circuits. Journal of the Audio Engineering Society, 2021, vol. 69, pp. 506-516.

Chabassier J., Chaigne A., Joly P. Modeling and simulation of a grand piano. The Journal of the Acoustical Society of America, 2013, vol. 134, pp. 648-665.

Ducceschi M., Bilbao S. Simulation of the geometrically exact nonlinear string via energy quadratisation. Journal of Sound and Vibration, 2022, vol. 534, p. 117021.

Hamilton B., Bilbao S. Time-domain modeling of wave-based room acoustics including viscothermal and relaxation effects in air. JASA Express Letters, 2021, vol. 1, p. 092401.

Bilbao S., Hamilton B. Wave-based room acoustics simulation: explicit/implicit finite volume modeling of viscothermal losses and frequency-dependent boundaries. Journal of the Audio Engineering Society, 2017, vol. 65, pp. 78-89.

Cadoz C. The physical model as metaphor for musical creation: pico.. TERA, a piece entirely generated by physical model. International Computer Music Conference, 2002, pp. 305-312.

Chafe C. Case studies of physical models in music composition. Proceedings of the 18th International Congress on Acoustics, 2004, pp. 2505-2508.

Sturm B. L. Composing for an ensemble of atoms: the metamorphosis of scientific experiment into music. Organised Sound, 2001, vol. 6, pp. 131-145.

Vinjar A. Bending common music with physical models. International Conference on New Interfaces for Musical Expression, 2008, pp. 335-338.

Nierhaus G. Algorithmic composition: paradigms of automated music generation. Wien, Springer Publ., 2009, 287 p.

Roads C. Composing electronic music: a new aesthetic. New York, Oxford University Press, 2015, 512 p.

Freund L. B., Suresh S. Thin film materials: stress, defect formation and surface evolution. Cambridge, Cambridge University Press, 2004, 770 p.

L"uth H. Solid surfaces, interfaces and thin films. Berlin, Springer Publ., 2001, 589 p.

Eremeyev V. A. On effective properties of materials at the nano- and microscales considering surface effects. Acta Mechanica, 2016, vol. 227, pp. 29-42.

Javili A., McBride A., Steinmann P. Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface, and curve structures at the nanoscale. A unifying review. Applied Mechanics Reviews, 2013, vol. 65, p. 010802.

Mogilevskaya S. G., Crouch S. L., La Grotta A., Stolarski H. K. The effects of surface elasticity and surface tension on the transverse overall elastic behavior of unidirectional nanocomposites. Composites Science and Technology, 2010, vol. 70 pp. 427-434.

Sharma P., Ganti S., Bhate N. Effect of surfaces on the size-dependent elastic state of nanoinhomogeneities. Applied Physics Letters, 2003, vol. 82, pp. 535-537.

Wang J., Huang Z., Duan H., Yu S., Feng X., Wang G., Zhang W., Wang T. Surface stress effect in mechanics of nanostructured materials. Acta Mechanica Solida Sinica, 2011, vol. 24, pp. 52-82.

Povstenko Y. Z. Theoretical investigation of phenomena caused by heterogeneous surface tension in solids. Journal of the Mechanics and Physics of Solids, 1993, vol. 41, pp. 1499-1514.

Duan H. L., Wang J., Karihaloo B. L. Theory of elasticity at the nanoscale. Advances in Applied Mechanics, 2001, vol. 42, pp. 1-68.

Miller R. E., Shenoy V. B. Size-dependent elastic properties of nanosized structural elements. Nanotechnology, 2000, vol. 11, pp. 139-147.

Kostyrko S. A., Altenbach H., Grekov M. A. Stress concentration in ultra-thin coating with undulated surface profile. VII International Conference on Computational Methods for Coupled Problems in Science and Engineering, 2017, pp. 1183-1192.

Kostyrko S. A., Grekov M. A., Altenbach H. A model of nanosized thin film coating with sinusoidal interface. AIP Conference Proceedings, 2018, vol. 1959, p. 070017.

Kostyrko S. A., Grekov M. A., Altenbach H. Stress concentration analysis of nanosized thin-film coating with rough interface. Continuum Mechanics and Thermodynamics, 2019, vol. 31, pp. 1863-1871.

Kostyrko S. A., Grekov M. A., Altenbach H. Coupled effect of curved surface and interface on stress state of wrinkled thin film coating at the nanoscale. ZAMM - Journal of Applied Mathematics and Mechanics, 2021, vol. 101, p. e202000202.

Shuvalov G. M., Vakaeva A. B., Shamsutdinov D. A., Kostyrko S. A. The effect of nonlinear terms in boundary perturbation method on stress concentration near the nanopatterned bimaterial interface. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Sciences. Control Processes, 2020, vol. 16, iss. 2, pp. 165-176. https://doi.org/10.21638/11701/spbu10.2020.208

Kim H.-K., Lee S.-H., Yao Z., Wang C., Kim N.-Y., Kim S. I., Lee C. W., Lee Y.-H. Suppression of interface roughness between BaTiO_3 film and substrate by i_3N_4 buffer layer regarding aerosol deposition process. Journal of Alloys and Compounds, 2015, vol. 653, pp. 69-76.

Romanova V. A., Balokhonov R. R. Numerical analysis of mesoscale surface roughening in a coated plate. Computational Materials Science, 2012, vol. 61, pp. 71-75.

Javili A., Bakiler A. D. A displacement-based approach to geometric instabilities of a film on a substrate. Mathematics and Mechanics of Solids, 2019, vol. 24, pp. 2999-3023.

Nikravesh S., Ryu D., Shen Y.-L. Direct numerical simulation of buckling instability of thin films on a compliant substrate. Advances in Mechanical Engineering, 2019, vol. 11, pp. 1-15.

Kostyrko S., Shuvalov G. Surface elasticity effect on diffusional growth of surface defects in strained solids. Continuum Mechanics and Thermodynamics, 2019, vol. 31, p. 1795001803.

Shuvalov G., Kostyrko S. On the role of interfacial elasticity in morphological instability of a heteroepitaxial interface. Continuum Mechanics and Thermodynamics, 2021, vol. 33, pp. 2095-2107.

Shuvalov G. M., Kostyrko S. A. Stability analysis of a nanopatterned bimaterial interface. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Sciences. Control Processes, 2021, vol. 17, iss. 1, pp. 97-104. https://doi.org/10.21638/11701/spbu10.2021.109

Wu C. H. The chemical potential for stress-driven surface diffusion. Journal of the Mechanics and Physics of Solids, 1996, vol. 44, pp. 2059-2077.

Gurtin M. E., Murdoch I. A. A continuum theory of elastic material surfaces. Archive for rational mechanics and analysis, 1975, vol. 57, pp. 291-323.

Gurtin M. E., Murdoch I. A. Surface stress in solids. International Journal of Solids and Structures, 1978, vol. 14, pp. 431-440.

Chen T. , Chiu M.-S., Weng C.-N. Derivation of the generalized Young - Laplace equation of curved interfaces in nanoscaled solids. Journal of Applied Physics, 2006, vol. 100, p. 074308.

Grekov M. A. Singuliarnaia ploskaia zadacha teorii uprugosti [ Singular plane problems in elasticity ]. St. Petersburg, St. Petersburg University Press, 2001, 192 p. (In Russian)

Kolosov G. V. Primenenie kompleksnykh diagramm i teorii funktsii kompleksnoi peremennoi k teorii uprugosti [ Application of complex diagrams and the theory of functions of a complex variable to the theory of elasticity ]. Moscow, Gostekhizdat Publ., 1935, 224 p. (In Russian)

Muskhelishvili N. I. Some basic problems of the mathematical theory of elasticity. Groningen, P. Noordhoff Ltd. Publ., 1963, 732 p.

Nayfeh A. H. Perturbation methods. Wienheim, John Wiley & Sons Publ., 2008, 440 p.

Osaka N. Timbre morphing and interpolation based on a sinusoidal model. The Journal of the Acoustical Society of America, 1998, vol. 103, p. 2757.

Tellman E., Haken L., Holloway B. Timbre morphing of sounds with unequal numbers of features. Journal of the Audio Engineering Society, 1995, vol. 43, pp. 678-689.

Grekov M. A., Kostyrko S. A. Surface effects in an elastic solid with nanosized surface asperities. International Journal of Solids and Structures, 2016, vol. 96, pp. 153-161.

Kostyrko S. A., Grekov M. A. Elastic field at a rugous interface of a bimaterial with surface effects. Engineering Fracture Mechanics, 2019, vol. 216, p. 106507.

Mikhlin S. G. Integral equations: and their applications to certain problems in mechanics, mathematical physics and technology. New York, Pergamon Press, 1964, 338 p.

Shenoy V. B. Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Physical Review B, 2005, vol. 71, p. 094104.

Загрузки

Опубликован

27.04.2023

Как цитировать

Костырко, С. А., & Шершенков, Б. С. (2023). Метод синтеза звука, основанный на анализе упругих напряжений в гофрированном тонкопленочном покрытии. Вестник Санкт-Петербургского университета. Прикладная математика. Информатика. Процессы управления, 19(1), 72–89. https://doi.org/10.21638/11701/spbu10.2023.107

Выпуск

Раздел

Информатика