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The concept of resolving the set within a graph is related to the optimal placement problem of
access points in an indoor positioning system. A vertex w of the undirected connected graph
G resolves the vertices u and v of G if the distance between vertices w and u differs from the
distance between vertices w and v. A subset W of vertices of G is called a resolving set, if every
two distinct vertices of G are resolved by some vertex of w € W. The metric dimension of G
is a minimum cardinality of its resolving set.The set of access points of the indoor positioning
system corresponds to the resolving set of vertices in the graph.The minimum number of access
points required to locate each of the vertices corresponds to the metric dimension of graph. A
resolving set W of the graph G is fault-tolerant if Wminus{w} is also a resolving set of G,
for each w € W. The fault-tolerant metric dimension of the graph G is a minimum cardinality
of the fault-tolerant resolving set. In the indoor positioning system the fault-tolerant resolving
set provides correct information even when one of the access points is not working. The article
describes a special case of a graph called the king’s graph, or the strong product of two paths.The
king’s graph is a building model in some indoor positioning systems. In this article we give an
upper bound for the fault-tolerant metric of the king’s graph and a formula for a particular
case of the king’s graph. Refs 20. Figs 2.

Keywords: fault-tolerant metric dimension, strong product graphs, king’s graph, access
points of indoor positioning system.
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OTKA30YCTONYUBAS METPUYECKASI PASMEPHOCTD
I'PA®A XOJ0B IIAXMATHOTI'O KOPOJIA

ITerposaBoackuii rocymapcTBeHHbIN yHUBepcuTeT, Poccuiickas Peneparus,
185910, IlerpozaBojck, up. Jlenuna, 33

B HekoTopoMm npub/iMyKeHUr aHAJOrOM 3aJa4i ONTUMAJIBHOIO pa3MeIleHus] TOYeK JIOCTYIIa CH-
CTeMbl BHY TPEHHETO MO3UIMOHUPOBAHUS CIIY?KHUT 331249 ONPEEICHUsT METPUIECKON Pa3MepHO-
cTu rpada 1 MOCTPOEHUsI €ro pa3pelraroIiero MHOXKeCcTBa. [1ycTh BeplmHa w HEOPUEHTUPOBAH-
HOrO CBsI3HOrO rpada G pazymdaer BepHIUHbL U 1 v rpada (G, eciu pacCTOSHUE MEXK/Ly BEPIIN-
HAMW W U U OTJIUYAETCS OT PACCTOSIHUSI MEK/1y BeplinHaMu w u v. [lommuoxkectBo W BepiimH
rpada GG Ha3bIBAETCs Pa3pPEeIIaoIM, eCJIH [ KayK 10U Hapbl BepiunH u u v rpada G Haiger-
cs1 pazyyaroniasi ux BepimuHa w € W. Merpudeckasi pasMepHOCTh rpada — 3TO MUHUMAJb-
HOE YHCJIO BEPIIUH B Pa3pEINaoNeM MOAMHOXKEeCTBe. ToduKaM J0CTyIa CHCTEMBI BHYTDPEHHETO
TIO3UIMOHUPOBAHUS COOTBETCTBYET PA3PEIIAIONIee MHOXKECTBO BepIINH rpada, a MUHUMAJILHO
HEeOOXOIMMOMY YHCJIy TOYEK JIOCTYIIa — MeTpUYdecKas pa3sMepHocThb rpada. Paspernatoiiee MHO-
2KECTBO HA3BIBACTCH OTKA30YCTOWUMBBIM, €CIU OHO OCTACTCA PA3PEIIAIONIUM, JAaXKe €CJIM U3 HEro
YAAJIUTH JI00Y0 ero Bepinuny. OTKa30ycTORYNBas MeTpUYIECKasi pa3MepHOCTh rpada — 3T0 MU-
HUMAJIbHOE YUCJIO BEPIIUH B OTKA30YCTOWUMBOM Pa3PENIAIONIEM [IOJIMHOXKECTBE, UTO B CUCTEME
BHYTPEHHETO MMO3UIMOHUPOBAHUsI COOTBETCTBYET BO3MOXKHOCTHU OIPEIEJIEHUs] MECTOIOIOXKEHUST
00beKTa JaxkKe B CIydae HoTepu MHMOPMAIUKU OT OJHOW M3 TOYEK JOCTyIa. PaccMOTpeH omuH
YaCTHBIA ciydail rpada — CuIbHOE NPOU3BEJIEHME JBYX IPOCTHIX IIelell, Ha3bIBAeMOe HHaJe
rpadOoM XOJIOB IIAXMaTHOI'O KOPOJs. YCTaHOBJIEHA BEPXHssl TPAHUIA I OTKA30yCTONINBOMN
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METPUYECKOIl pasMepHOCTH rpada XOJ0B KOPOJIs U IMpHuBeaeHa (opMyJia JJIs OJHOIO 9aCTHOTO
ciy1as. Bubsauorp. 20 mazs. M. 2.

Karouesvie caosa: OTKa30yCcTOddnBas MeTpUYecKasl Pa3sMepPHOCTb, CHJIBHOE IIPOU3BeE/IEHIEe
rpadoB, rpad XOHOB KOPOJIsi, TOYKH JIOCTYIA CUCTEMbl BHYTPEHHErO HNO3UIMOHUPOBAHUSA.

Introduction. The concepts of the graph theory is used to describe the problem
of navigation in the network [1] and in indoor positioning system to model the floorplan
of the building. The building floorplan is modeled by the undirected connected graph
G = (V, E), where the vertices of the set V represent small zones, and the edges of the set
E denote the possibility of moving directly between zones. A zone may consist of only one
room, and big rooms may be partitioned into several zones. The distance d(u,v) between
vertices u and v is the minimum number of edges in the path having these two vertices as
its endpoints.

In some vertices of the graph we can place the landmarks of the navigation system
or access points of the indoor positioning system [2]. The set of access points of the
indoor positioning system corresponds to the resolving set of vertices in graph. The
minimum number of access points required to locate each of the vertices is called the
metric dimension.

Formally, let W = {wy,...,w;} be an ordered subset of vertices of graph G. The
ordered k-tuple r(v | W) = (d(v,wy),...,d(v,wy)) is called a representation of the vertex
v with respect to W. The subset of vertices W C V is called a resolving set, if every two
vertices u, v have distinct representations r(u | W) and r(v | W). The metric dimension
B(Q) of the graph G is a minimum cardinality of the resolving set for G. A resolving set
with the minimum number of vertices is called a metric basis for G.

In other words, the metric dimension of the graph G is the smallest integer m, for
which subset W C V exists, such that |W| = m and for every pair of vertices u,v € V
there is w € W, that the distance between the vertices w and u is not equal to the distance
between the vertices w and v. We also will say, that a vertex w of the graph G resolves
the vertices v; and vy in G (is able to distinguish v and vs), if d(w, v1) # d(w, v2).

A resolving set W of the graph G is fault-tolerant if W\ {w} is also a resolving set
of G, for each w € W. The fault-tolerant metric dimension ('(G) of G is a minimum
cardinality of the fault-tolerant resolving set. A fault-tolerant resolving set of cardinality
B'(G) is called a fault-tolerant metric basis of G.

The strong product G; X G5 of the graphs G1 = (Vi, E1) and Gy = (Va, E») is the
graph G = (V, E), such that V = V; x V4 and two distinct vertices (uy,uz2) and (v1,v2)
are adjacent in G if and only if

u; = vy and (ug,v2) € Eo, or

ug = vg and (uy,v1) € Eq, or

(Ul,’Ul) € Fy and (U27'U2) € FEs.

Now we denote P, = (I, Jm) — path graph, where m is natural number, I, =
{1,...,m}and J,, ={(4,i+1)]|i=1,...,m—1}.

The king’s graph with natural parameters (m,n) is a graph P, X P,, that represents
all legal moves of the king chess piece on a m x n chessboard. The vertex set of the
m X n king’s graph is the Cartesian product V' = I, x I,,. It is easy to check, that
d(v1, va) = max{|i; —ia|, |j1 — j2|} for any two vertices v; = (i1, j1) and ve = (ia, j2) of
graph P, X P,,.

It is known that G(P, X P,) = 3 [3], 8/(P, X P,) = 4 [4] for n > 2. The following
theorem is proved in [5].
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Theorem 1 [5|. For any integers n and m such that 2 < m <mn,

n+m—2—‘

m—1

B(P,KP,) = [

Figure 1 shows graph P5 X Pjs. Vertices of metric basis are black, (P K Pjo) = 7.

) P P ) ) M) ) )

N\ o o U U

Fig. 1. Metric basis for graph Ps X P2

In this paper we study the problem of finding a sharp bound for the fault-tolerant
metric dimension of the king’s graph and the exact value for a particular case. We assume
that n > m for the graph P, X P,. The case m > n is considered analogously.

Related works. The problems of finding the metric dimension of a graph were
introduced independently by Slater (1975) and Harary and Melter (1976) [6, 7|. Melter
studied the metric dimension problem for the tree. Garey and Johnson (1979) noted
that determining the metric dimension of the graph is an NP-complete problem. Khuller,
Raghavachari, Rosenfeld (1996) described the application of the metric dimension problem
in the field of computer science and robotics and outlined the graphs with metric dimension
1 and 2 [8]. Chartrand, Eroh, Johnson, Oellermann (2000) described the application in
chemistry [9]. The strong metric dimension problem was introduced by Seb6 and Tannier
(2004) [10]. Fehr, Gosselin, Oellermann (2006) studied the metric dimension for different
types of graphs, for exsample Cayley digraphs [11]. The concept of the fault-tolerant
metric dimension was introduced by Hernando, Mora, Slater, Wood (2008) [12]. Okamoto,
Phinezy, Zhang (2010) introduced the concept of local metric dimension [13]. The metric
dimension of the random graph was considered by Bollobas, Mitsche, Pralat (2012) [14].
The formulas for metric dimension of many graph classes were studied [15-17]. Zejnilovi¢,
Mitsche, Gomes and Sinopoli (2016) extended the metric dimension to the graphs with
missing edges [18].

The main results. We present the main result in the form of two theorems.

The first theorem gives the upper bounds for the fault-tolerant metric dimension of
the king’s graph.

Theorem 2. For any integers n and m, such that 2 < m < n, the following assertion
hold. If (m — 1) is a divisor of (n —2), then

F(P.RP,)<2" "2 43,
m—1

otherwise

ﬁ’(Pm&Pn)@["‘ﬂm.

m—1
There is a formula for the fault-tolerant metric dimension for a partcular case of king’s
graph in second theorem.
Theorem 3. For any integers n and m, such that m is even, m > 2, n > 2m—1 and
(m —1) is a divisor of (n — 1),
n—1

"(PoXP,)=2—" +2.
(P BP) =20
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First we introduce some definitions and prove some lemmas.

For the integers m, n, j, such that 2 < m < n and j € {1,...,n}, V; denotes the
vertex subset of graph P,, X P,, where V; = {(¢,7) | ¢ = 1,...,m}. We introduce the
notation

J2
2 U Vi.
J=J1
Lemma 1. Let 2 < m < n be integers. Let W be a resolving set of graph G = P,, KX P, .
If vy = (i1, §'), va = (i2, j') are vertices of G and w = (i, j) € W, such that |j — j'| >
m — 1, then vertex w does not resolve the vertices v1 and vs.
Proof. Since |i —¢'| <m —1foralli =1,...,m, then

d(wa ’01) = d(wa UQ) = |j —j,|

Hence, then vertex w does not resolve the vertices v; and vy. Lemma is proved.

Lemma 2. Let 2 < m < n be integers. Let W be a resolving set of graph P, X P,.
Then for any j' € {1,...,n} there exists vertex w = (i, j) € W, such that |[j—j' | < m—1.

Proof. Suppose, for the contrary, that exists j/ € {1,...,n}, such that for all w =
(i, j) € W we have |j — j'| = m — 1. We now take any distinct i1, iz € {1,...,m}.
According to the Lemma 1, no vertex w € W resolve the vertices v1 = (i1, j') and
vy = (i2, j'). This contradiction proves the lemma.

Lemma 3. Let 2 < m < n be integers and let W be a resolving set of graph P, X P,.
Letj' € {1,...,n}. If there exists only one vertexw = (i, j) € W, such that |j—j'| < m—1,
then j = j'.

Proof. Suppose, for the contrary, that exists j* € {1,...,n}, that there exists only
one vertex w = (4, j) € W, such that |j — j'| <m — 1, but j # j'.

Let iy = 4. If i < m, then let io = i+ 1. If i = m, then let i =i — 1. Let v1 = (i1, j),
vy = (i2, j'). Then d(w, v1) = |j — j'|, d(w, v2) = |j — j'|, hence d(w, v1) = d(w, v2)
and vertex w € W does not resolve the vertices v; and vs. In addition, according to the
Lemma 1, no vertex in W\ {w} that distinguish vertices v; and vs.

This contradiction proves the lemma.

Lemmas 2 and 3 lead to the next results.

Corollary 1. Let 2 < m < n be integers and let W be a resolving set of graph P, X P,.
Then for all j € {1,...,n} there exists w € W, such that w € V; or exist two distinct
vertices (i1, j1) € W and (iz, j2) € W, that |j — j1| <m —1 and |j — jo| <m — 1.

Corollary 2. Let 2 < m < n be integers and let W be a fault-tolerant resolving set of
graph P,, X P,,. Then for all j € {1,...,n} there exist two distinct vertices wy,wy € W,
such that wi,wy € V; or exist three distinct vertices (i1, j1) € W, (i2, j2) € W and
(i3, 43) €W, that | —j1]l <m —1, |j —jo| <m —1 and |j — j3| <m — 1.

Lemma 4 [19]. A resolving set W of a graph G is fault-tolerant if and only if every
pair of vertices in G is resolved by at least two elements of W.

Lemma 5. Let G = P,, X P,,, where m is even, n > m > 2. Let W be a fault-tolerant
resolving set of G. Then for all j € {0,...,n—m+ 1},

V}-H, j+m—1 ﬂ W‘ 2.

Proof. Let j € {0,....n—m+ 1}, V' = Vji1 jrm-1, 11 = (%,j—&—%), vy =
(% + 1,7+ %) In this case v1,v2 € V'. Let V be the vertex set of graph G.
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By Lemma 4 for the vertices vy, vy there exist wi,ws € W, w1 # ws, such that
d(wy,v1) # d(wy,v2) and d(wa,v1) # d(wa, v2).

Consider a vertex w = (i,k) € V \ V'. Since |[i — 2| < 2, |i— 2 —1| < 2 and
|k —j— 5| > % we have d(w,v,) = |k —j — | and d(w vg) |k: —j — m| Hence
d(w,v1) = d(w,v2) and no vertex in V' \ V' is able to distinguish v; and vs.

Thus wy,ws € V' () W. Therefore, the proof is complete.

Lemma 6. Let G = P, K P,, where m > 2 and n > 2. Let W be a fault-tolerant
resolving set of G and let j € {1,...,n}. If exist distinct vertices wy,ws € W, that
W = {wi, w2} or d(w,v1) = d(w,v2) for any w € W \ {wy, w2} and for each pair of
distinct vertices vi,v2 € Vj, then wy,we € Vj.

Proof. Let G, j, w; and ws be as in the hypotheses. Let V' be the vertex set of
graph GG. By Lemma 4 for every pair of vertices vy, vy € V; there are at least two vertices
of W, which are able to distinguish v; and ve. Hence, we have that d(wi,v1) # d(wi,v2)
and d(wa, v1) # d(ws,ve) for all different vy, vo € V.

We will show that wy € Vj. Suppose, for the contrary, that wy = (4,71) and ji # j.
If ¢ =1, then w; is not able to distinguish v; = (1,7) € V; and vy = (2,4) € V;. If i > 1,
then wq is not able to distinguish v = (¢,7) € V; and v = (i — 1,5) € V;. In both cases
we have d(wy,v1) = d(wy,v2) = |71 — j| and we get a contradiction.

The proof that wy € V; is deduced analogously.

Lemma is proved.

Lemma 7. Let G = P,, X P,, where m > 2 andn > 2m—3. Let W be a fault-tolerant
resolving set of G and let V] Vinax{1,j—m+2}, min{n,j+m—2}, where j € {1,... ,n}. If

W] =2,
then V; \W C Vj.

Proof. Let j € {1,...,n} and let {w;, w2} = V;(\W. Let V be the vertex set of
graph G. We differentiate two cases for V'\ ffj

Case 1: V \ V; # (). Consider a vertex w = (i,k) € V' \ V; and any different vertices
v1 = (i1,7) € Vi, va = (i2,j) € Vj. Since |i—i1| < m—1, [i—is] <m—1and |[k—j| > m—1
we have d(w,v1) = |k — j| and d(w vg) = |k — j|. Hence d(w,v1) = d(w, v2) and no vertex
in V'\ Vj is able to distinguish v; and vy. Thus no vertex in W \ {wy,w} is able to
distinguish any two different vertices u,v € V;. Therefore, by Lemma 6 wy,ws € Vj.

Case 2: V\f/j = (). In this case we have W = {w1, w2}, by Lemma 6 wy, ws € V; and
we conclude the proof.

Lemma 8. Let G = P,, K P,,, where m > 2 and n > m. Let W be a fault-tolerant
resolving set of G. Then

Vn—m—i—l, n ﬂ W‘ = 3

Proof. By Corollary 2 we have [V, N\W| = 2 or |Vi—my2, » (VW] = 3 and, ad-
ditionally, |V,,—1 W[ = 2 or |Vo—mt1, n (VW] = 3. Anyway we get [Vi—my1, (W] = 3.
The lemma is proved.

Now we present the proof of the Theorem 2.

Proof. Let 2 < m < n be integers and let G = P,, ¥ P,. In paper [20] is shown,
how construct a resolving set W (a metric generator) for graph G, such that

—1
|W|_k[ J+1

We use that construction and consider two cases.
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Case I: (m — 1) is a divisor of (n — 2). Let

w {(meﬁuﬁ—1Wn—D+1H, if ¢ is odd,
Y7 (m, min{n, (t —1)(m —1)+1}), otherwise,

t=1,...,k

{(mwmmhu@—lxm—1y+uy if ¢ is odd,
e = (1, min{n, (t —1)(m—1)+1}), otherwise,

t=1,.. k-1,
{ (1, n), if kis odd,
Wk =

(m, n), otherwise,

- { (1, min{n, (t—1)(m—1)+1}), if ¢ is odd,
Wae = (m, min{n, (t—1)(m —1)+1}), otherwise,

t=1,... k-1,

[ 1, n-1), ifkisodd,
Wak = (m, n—1), otherwise.

Fori=1,...,3 let
Wi=A{wy |t=1,...,k}.

W1 is resolving sets of G [20]. Analogously we can show that Wa, W35 are resolving
sets of G.

Let U = {wig—1, w1k, w3k }. It is obviously, that wip—1 = wsk—1, w1k = wap, ws =
W2k —1, Wl\U = I/Vg\(]7 (Wl\U)ﬂ(WQ\U) = @ Let W = W1 UW2 UW3 We differentiate
five cases. If w € Wy \ U, then Wy C W\ {w}. If w € Wo \ U, then W7 C W\ {w}. If
w = wik_1, then Wo C W\ {w}. If w = wig, then W3 € W \ {w}. If w = wsg, then
Wy € W\ {w}. We can point out that, in any case, W \ {w} is resolving sets of G. Thus
W is a fault-tolerant resolving set.

Case 2: (m — 1) is not a divisor of (n — 2). Let

@, min{n, (t—-1)(m—1)+1}), if¢isodd,

Y= (m, min{n, (t—1)(m —1)+1}), otherwise,

~f (m, min{n, (t—-1)(m—1)+1}), if¢isodd,

e = (1, min{n, (t—1)(m—1)+1}), otherwise,
t=1,... .k

Fori=1,2 let
Wi:{wit |t:1,...,k}.

Wy, Wy are resolving sets of G [20].

It is obviously, that Wy (W2 = 0. Let W = Wy |J Wa. We differentiate two cases for
we W.If we Wy, then Wy C W\ {w}, if w € Wy, then Wi C W\ {w}. We can point out
that, in any case, W \ {w} is resolving sets of G. Thus W is a fault-tolerant resolving set.

This proves the theorem.

Now we present the proof of the Theorem 3.

Proof. Let n and m be integers, such that m is even, m > 2, n > 2m—1and (m—1)
is a divisor of (n — 1). Let W be a fault-tolerant metric basis of P,, X P, and let V' be
the vertex set of P,, X P,.
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We denote k = 2=, By Lemma 5 we have for all t € {0,...,k — 1}

-1

Vitm—1)+1, (t41)(m—1) ﬂ W‘ = 2.

By Lemma 8 we have

anerl, n ﬂ W‘ 2 3.

We consider two cases.
Case 1. If there exists t € {0,...,k — 1} such that

Vitm—1)+1, (t4+1)(m—1) ﬂ W‘ =3,

since V' is the union of sets, that are disjoint,

k—1
V= U ‘/t(m—l)-i-l, (t+1)(m—1) U anerl, ny

t=0

then
[W|>2(k—1)+34+3=2k+4.

Case 2. We assume, that for all ¢t € {0,...,k — 1},

Vt(m71)+1, (t+1)(m—1) ﬂ W‘ =2.

We first consider that ¢ = 0:
Vi (W] =2

Then Lemma 7 leads to V;, ,,,—1 (VW C V4, in particular
W] =2
We now take ¢ = 1 in (1) and we get
Wﬁgmkn(]wj=2.
Since Va, yp—1 [\ W = 0 we can notice, that
h@%m4ﬁjwﬂ:z
Then Lemma 7 leads to V3 o(m—1) AW C V,,, in particular

’wmﬂwkz

Further it is analogically proved by mathematical induction, that

forallt=1,...,k—2.
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By Lemma 5 we have

‘V(k—1)(m—1)+2, k(m—1)+1 ﬂ W‘ =2 (5)
and
‘Vk(m—1)+2, n mW‘ Z 2. (6)

Since V is the union of sets, that are disjoint,

k
V= U Vitm—1)+2, (t+1)(m-1)+1 UVL
t=0

and taking into account the above (2)—(6), we deduce
|[W| > 2k + 4.

According to the two cases above we have

-1
B (Pn®Py) = |W|>2%k+4=2"—+2
m—1
By Theorem 2 we have (P, ¥ P,,) < 22=L 4 2. Hence

-1
(PR P,) =2~ 42.
i ) m—1 *
This proves the theorem.

Figure 2 shows graph Ps; X P;;. Vertices of the fault-tolerant metric basis are black,
B (PsX Ppp) =12.

Fig 2. The fault-tolerant metric basis for graph Ps X Pi;

Conclusion. Theorem 3 leads to the following inference. The fault-tolerant metric
basis for a partcular case of the king’s graph contains two times more vertices than the
metric basis does. Our conjecture consists of the statement that the upper bound for the
fault-tolerant metric dimension of the king’s graph from Theorem 2 is an exact value.
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